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1. Introduction: the sound modeling concept

Sound modeling is an important part of the analysis-synthesis process since it combines sound
processing and algorithmic synthesis within the same formalism. Itsaim isto realize sound simulators
using synthesis methods based on signal models and/or physical models.

Analysis-synthesis consists of a set of procedures the purpose of which is to collect information
about a natural sound and to reconstruct it. Different methods can be applied, and the success of each
method depends on their adequacy with the sound effect to be produced. Figure 1.1 shows the most
commonly used procedures in a schematic way. The three parts of the figure correspond to different
processes. The centra level corresponds to a direct analysis-synthesis process and consists of
reconstructing a sound signal by inversion of the analysis procedure. Thisis auseful process which
uses analysis to get information about a sound, and synthesis (inversion) to verify that no information
islost. The analysis makes it possible to classify and characterize audio signals [Kronland-Martinet et
al., 1987], but the result of the processis simply areproduction of the natural sound. From amusical
point of view, arepresentation of sounds by analysisis useful for intimate modifications of a sound.
This sound transformation process corresponds to the upper path in Figure 1.1 and is performed by
altering the representation between the analysis and the synthesis procedures. The way in which the
sound can be altered depends upon the choice of the analysis method. The energy distribution and/or
the frequencies of the spectral components can, for example, be manipulated through spectral analysis.
The time-frequency analysis allows a separation of the time and frequency characteristics associated
with the sound, and can be very useful. However, this approach conflicts with a very important
mathematical principle which states that one can not arbitrarily modify atime-frequency representation
of asignal. This constraint is due to the existence of the so-called "reproducing kernel" which takes into
account the redundancy of such representations [Kronland-Martinet et al., 1987]. It corresponds to the
uncertainty principle stating that one cannot be as precise as one wishes in the localization of both the
time and the frequency domains. This constraint strongly limits the number of applicable time-
frequency transformation processes, and makes the search for adequacy between the altered values and
the obtained sounds difficult. Anyway, very interesting sounds can be obtained by carefully using such
altering procedures [Arfib et al., 1993]. | shal in this document specialy pay attention to the lower part
of Figure 1.1 which corresponds to the sound modeling. In this part, the representations obtained from
the analysis provide parameters corresponding to the synthesis models. We now get to the concept of
the algorithmic sampler [Arfib et al., 1992] which consists of simulating natural sounds through a
synthesis process that is well adapted to algorithmic and real-time manipulations. The resynthesis and
the transformation of natural sounds are then part of the same concept.
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Figure 1.1: General organization of the analysis-synthesis and modeling concept.

This document is organized as follows:

In chapter 2, | describe the main synthesis techniques with particular emphasis on the so-called
« physical synthesis ». This rather new approach is interesting when taking into account the control
part of the model since the parameters used in the model are physically meaningful. In chapter 3, |
briefly describe the analysis techniques that have proved to be useful when focusing on sound signals
and how parameters can be extracted from the analysis for synthesis purposes. | particularly describe a
« matched time-frequency » analysis technique | have designed to analyze resonant systems which
takes into account the specificities of transient sounds. Chapter 4 gives an example of estimation of
parameters corresponding to a group additive synthesis process modeling a flute sound. The difficulties
in controlling such amodel and the lack of important aspects of the sound like for instance the noise
necessitates the use of a more physical description of the sound generator. Chapter 5 addresses this
problem by connecting a physical description of one-dimensiona systems and « propagative
synthesis » models simulating phenomena such as dissipation and dispersion occurring during wave
propagation in the medium. This approach is original and gives way to the characterization and the
construction of the elements of the digital model. Further on, in order to simulate sustained sounds, |
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present in chapter 6 a so-called hybrid model where the source and the resonator are modeled separately
by respectively signal and physical models. In this approach, the source is obtained by a deconvolution
of the sound with respect to the resonator. It has further been splitted into a deterministic and a
stochastic part which have been modeled separately. The deterministic part is modeled by a non-linear
synthesis model adjusted through psychoacoustic criteria such as the tristimulus. The stochastic part
takes into account both the density of probability and the power spectra density provided by the
analysis process and can be modeled by linear filtering of a white noise. Even though the methods
described can be applied to numerous sound generators, most of the methods are illustrated using the
flute signal. This signal represents a good way of testing the model, since it is generated by a very
complicated system involving resonant systems coupled to aturbulent air jet. In chapter 7 it is shown
how such amodel can be controlled in real time using an adequate interface. A flute interface devoted to
the real-time control of aflute model is described. Thisinterface makesit possible to pilot the proposed
model by a rea flute offering possibilities for making sound transformations from a traditiond
instrument. This interface may be useful to musicians.



2. Digital synthesis of sounds

Digital synthesis uses methods of signal generation that can be divided into two classes:
- signal models aiming at reconstructing a perceptive effect without being concerned with the specific
source that made the sound.
- physical models aiming at simulating the behavior of existing or virtual sound sources by taking into
account the most important physical features.

2.1. Signal synthesis models

Signal models use a purely mathematical description of sounds. They are numerically easy to
implement, and they guarantee a close relation between the synthesis parameters and the resulting
sound. These methods are similar to shaping and edification of structures from materials, and the three
principal groups can be classified as follows:

- additive synthesis
- subtractive synthesis
- global (or non-linear) synthesis

2.1.1.Additive synthesis

Like abuilding being built by piling up materials (bricks, stones,...), acomplex sound can be
congtructed as a superposition of elementary sounds, generally sinusoidal signals modulated in
amplitude and frequency [Risset, 1965]. For periodic or quas periodic sounds, these components have
average frequencies that are multiples of one fundamental frequency and are called harmonics. The
periodic structure leads to electronic organ sounds if one doesn't consider the micro variations that can
be found from the amplitude and frequency modulation laws of the components of any real sound.
These dynamic laws must therefore be very precise when reproducing areal sound. The advantage of
these synthesis methods is essentially the possibilities of intimate and dynamic modifications of the
sound. Granular synthesis can be considered as a special kind of additive synthesis, since it also
consistsin summing up elementary signas (grains) locaized in both the time and the frequency
domains [Roads, 1978].

The parameters defining an additive synthesis model are given by the amplitude modulation
laws A, and the frequency modulation laws f, of the components. The synthesis process is then

obtained by:



t

st) = @ AWcos(2p (Y, (u)du)

k=1
where K isthe number of the spectral components.

A real sound can contain up to one hundred significant components. This means that additive
syntesis models make use of agreat number of parameters which are difficult to control without
constructing an intermediate software layer which makesit possible to act on the parametersin a global
way.

2.1.2.Subtractive synthesis

Like a shapeless stone being scul pted by removing unwanted parts, a sound can be constructed
by removing undesired components from an initial complex sound such as a noise. This synthesis
techniqueis closely linked to the theory of digital filtering [Rabiner et a., 1975] and can be related to
some physical sound generation systems like for instance the speech signal [Atd et al., 1971]
[Flanagan et al., 1970]. The advantage of this approach (if we omit the physical aspects which will be
discussed when describing synthesis models by physical modeling) is the possibility of uncoupling the
excitation source and the resonance system. The sound transformations related to these methods often
use this property in order to make hybrid sounds or crossed synthesis of two different sounds by
combining the excitation source of a sound and the resonant system of another [Makhoul, 1975]
[Kronland-Martinet, 1988]. A well-known crossed synthesisresult is for example the sound of a
talking cello obtained by associating an excitation corresponding to the string and a resonance system
corresponding to the time-varying formants (spectral bumps related to the modes) of the vocal tract.

signa
source sound
- FILTER |
X S
excitation resonance

Figure 2.1 lllustration of a subtractive synthesis process.

The general form of the synthesis process is given by the discrete temporal equation obtained
through an ARMA (autoregressive moving average) model [Max, 1987].
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where the coefficients a, are related to the zeros of the filter, and the coefficients b, to the poles.

Actually the frequency response of the system is given by:

oK -iwk
a ae
H(w) = —,_—":"o
1- g he™

2.1.3.Non-linear synthesis

Like moddling different objects from a block of clay, a simple and "inert" signa can be
dynamically modeled using global synthesis models. These methods are non-linear since the operations
on the signals are not simple additions and amplifications. The most well-known example of global
synthesis is undoubtedly the audio Frequency Modulation (FM) introduced by John Chowning
[Chowning, 1973] which has led to a « revolution » for the commercial synthesizers. The elementary
synthesis process for this method is given by:

s(t) = A(t)sin(at + I(t)sinbt),

where a isthe carrier frequency, b isthe modulant frequency and I(t) is the index of modulation. The

spectrum of s(t) contains components at frequencies a £ nb with amplitudes given by the Bessel

functionsJ, (1). Actually,

(t) = A(t)é J (1)sin(a + nb)

n=-¥
One can also generate asymetrical spectraby dightly modifying this process [Palamin et al., 1988]. The
advantage of the FM isthat it makes use of very few parameters, and that a small number of operations
can generate complex spectra. This simplifies the numerical implementation on one hand and the control
on the other hand. However, it is difficult to control the shaping of a sound by this method, since the
timbre isrelated to the synthesis parameters in a non-linear way and the continuous modification of
these parameters may give fast changes in the timre of the sound.

Other related methods have proved to be efficient for signal synthesis, such as the waveshaping
technique [Arfib, 1979] [Lebrun, 1979]. | shall briefly recall the mathematics of this method since it
will be used to model the deterministic part of a source signal in chapter 6.

The synthesis by waveshaping is given by:
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s(t) =g (I (cos(w,t)),
where o(x) isanon-linear function and

[(t) isthe index of distortion.
The non-linear function can be decomposed in different bases. When the purpose is to reproduce a
spectral evolution with spectral amplitudes that evolute as a function of the index, the Chebyshev’s
polynomials of the first kind are often used. These polynomials are defined by [Gradshteyn et al .,
1980]:

T.(x) = 2 iV ) +x- i) Y= cos(n arccosx)
n 2e u

and satisfy the recursive relation
Tu(X)- 2xT.(x)+ T, _,(x) =0
with T,(x) =1 and T,(x) = X.

X
= on the subset [-
1-x

The Chebyshev’ s polynomials are orthogonal with respect to the measure
1,1], that is

\T(x)T(x)d i:dB m* 0
07\/_ =

td_p m=0
One can then write:

900 =Q a,T(x)

k=0
When the index of distortion is|(t)=1, the output is given by:

¥ ¥
g(cosw,t) = é_ a, T (cosw,t) = é a, coskw,t
k=0 k=0
In this case thea, ' s represent the amplitudes of the output spectral components. This means that the
non-linear function has « created » harmonic components of the fundamental frequency w,. For other
values of the index, the spectrum of the generated signal varies accordingly to:

g(I(t)cosw {) = é a, T(I(t)cosw {)

k=0
leading to different sounds. This method shall be used when generating the deterministic part of the
source signal in the proposed flute model (chapter 6).
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2.2. Physical synthesis models

Physical synthesisis amore recent technique that | shall describe more precisely than signal
model synthesis since it will widely be used in chapter 5.

Unlike signal models using a purely mathematica description of sounds, physical models
describe the sound generation system using physical considerations. Such models can either be
constructed from the equations describing the behavior of the waves propagating in the structure and
their radiation in air, or from the behavior of the solution of the same equations. The first approach is
costly in terms of calculations and is generally only used in connection with research work [Chaigne,
1995], unless one uses a simplified version consisting of modeling the structure by an association of
simple elements (masses, springs, dampers...) [Cadoz et al., 1984]. Synthesis by simulation of the
solution of the propagation equation has led to waveguide synthesis models [ Smith, 1992], which have
the advantage of being easy to construct with a behavior close to that of areal sound generator. Thus
such synthesis methods are well adapted to the modeling of resonant sound generators such as musical
instruments. The principles of these methods and the models they lead to are described, and it is shown
how the parameters of these models relate to physical phenomenas. These parameters are related to the
structure of the sound generator as well as to the control during performance. If we consider for
example avibrating string, the Shannon’s sampling theorem states that one can, without loss of
information, split the movement into a succession of instantaneous clichés separated by an interval of
time T called the sampling period. If ¢ is the propagation speed of the waves in the string, thisis
equivalent to cutting the string into intervals of length x=cT and consider the propagation as a passage
from one elementary cell to another. This operation corresponds to a spatial discretization of the
structure, and it makes it possible to consider the wave propagation as the result of a succession of
transformations or filtering of the initial solicitation.

In the ideal case where we neglect losses and non-linearities, the excitation of the medium will
lead to a displacement of the waves (in two directions), and the result can thus be simulated by a
succession of delay lines corresponding to the sampling period T, symbolized in digita signal

processing by the varisblez'. In a more redlistic case where the waves undergo an attenuation
depending on the frequency, afilter P should be added between each delay. If in addition the medium is
dispersive, a « dephasor » (an all-passfilter) D should be added (Figure 2.2).

12
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Figure 2.2 Discrete smulation of the wave propagation in a dissipative and dispersive medium.

Since the system is linear, the theory of digital filters allows the gathering of elements of the same type.
Thus, the propagation medium can be represented by a succession of 3 elements, that isadelay line, an
attenuating filter accounting for the dissipation and an all pass filter accounting for the dispersion. Real
musical instruments represent media of finite length which means that the propagative waves are
reflected at the ends. The reflections correspond to returning the initid waves with a modification
depending on the boundary conditions. These waves are solutions of a boundary value problem. They
can be simulated thanks to alooped system with adelay line, an attenuating filter, an all passfilter, and
afilter corresponding to the reflections R ( Figure 2.3 ).

r» Delay line — Disp. —Dissip.j

R R

l— Delay line || Disp. —Di$ip.<-|

Figure 2.3: Propagation model in a bounded dissipative and dispersive medium.

Synthesis models related to a particular digital filter such as a second order IIR filter are known as
waveguide models. They can be used to simulate many different systems, such as for instance finite
length strings or tubes representing the resonant system in wind instruments [ Cook, 1992].

13



3.  Analysisof sounds

The analysis of natural sounds requires several methods to describe or represent pertinent physical
and perceptive characteristics of the sound [Risset et al., 1982]. Even though the spectral content of a
sound is often of great importance, the time evolution of its energy is at least asimportant. This can be
shown by artificially modifying the attack of a percussive sound in order to make it "woolly", or by
playing the sound backwards. The time and frequency evolution of each partid component is also
significant. The vibrato is a perceptively robust effect that is essential for example for the synthesis of the
singing voice. When creating a sound mimicking a plucked vibrating string the different decay times of
the partials are important. These examplesillustrate the need for analysis methods giving access to time
and frequency variations of sounds, and for this purpose a collection of methods cdled joint
representations has been designed.

The analysis methods of signals can be divided into two principal classes: parametric methods and
non-parametric methods. The parametric methods require an a-priori knowledge of the signal, and the
desired sound is obtained by adjusting the parameters of a model. The non-parametric models work
without any a-priori knowledge of the signal to be analyzed, but they often require alarge number of
coefficients to be determined.

Parametric methods.

These techniques are generally optimal for the representation of signals adapted to the chosen parametric
model. The most common method used for processing sounds is probably the linear prediction (LPC)
[Makhoul, 1975]. This technique is adapted to signals from sound production systems of the source-
resonance type. The resonant filter should be modeled by a digital al pole filter whose coefficients are
related to the frequency and to the width of the formants. The applications to the analysis-synthesis of
speech signals are numerous, because of a good correspondence between the physics of the vocal tract
and the linear filtering. The input signal of LPC systems s generally a broad-band noise or a periodic
signal adapted to a subtractive synthesis technique.

Non-parametric methods

Non-parametric technigues used in the analysis of sound signals generally correspond to representations
with physicaly and/or perceptively meaningful parameters. The best known representation is
undoubtedly the spectral representation obtained through the Fourier transform. The signal isin this case
associated to arepresentation giving the energy distribution as a function of frequency. As mentioned
earlier, this representation is not sufficient for characterizing the timbre and the dynamic aspects of a
sound. | shall in what follows describe the joint time-frequency representations considering both dynamic
and frequency aspects. The time-frequency transformations distribute the total energy of the signal ina
plane similar to a musical score where one of the axes corresponds to the time and the other to the

14



frequency. Such representations are to the sound what the musical scores are to the melodies. There are
two ways of obtaining thiskind of representation depending on whether the analysis acts on the energy of
the signal or on the signal itself. In the first case the methods are said to be non-linear, giving for instance
representations from the so-called “ Cohen’s class’. The best known example of transformations within
this classis the Wigner-Ville distribution [Flandrin, 1993]. In the other situation the representations are
said to be linear, leading to the Fourier transform with sliding window, the Gabor transform or the
wavelet transform. The linear methods have, at least as far as sound signals are concerned, a great
advantage over the non-linear methods since they make the resynthesis of signals possible and since they
ensure that no spurious terms could cause confusion during the interpretation of the analysis. These
spurious terms occur in non-linear analysis as aresult of cross terms which appear in the devel opment of
the square of asum. Thisiswhy | focus on the very important class of linear time-frequency methods.

3.1. Timefrequency and time-scale analysis

The linear representations are obtained by decomposing the signal into a sum of eementary
functions having good properties of localization both in time and in frequency. These eementary
functions correspond to the impulse response of bandpass filters. The central frequency of the analysis
band isrelated to afrequency parameter for time-frequency transformations and to a scaling parameter for
wavelet transforms. The choice of the elementary functions gives the shape of the filter and consequently
changes the characteristics of the data obtained through the analysis.

3.1.1.Time-frequency analysis

In the case of the Gabor transform, the elementary functions, also called time-frequency atoms or
grains, are all generated from a mother function (window) W(t) translated in time and in frequency. The
mother function is chosen to be well localized in time and frequency and to have finite energy (for
instance a gaussian function) (Figure 3.1). One can then construct afamily of grains given by:

W, (1) =W(t- t)e™" ",

wherew isthe parameter of frequency trandation and t the parameter of time trandation.
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Figure 3.1 Two different « grains » of Gabor in the time domain (left), and their Fourier transform
(right). In the Gabor representation, all the filters are obtained through trandation in frequency of a
mother function, yielding a constant absolute bandwidth analysis

Each value of the transform in the time-frequency plane is obtained by comparing the signal to atime-
frequency atom. This comparison is mathematically expressed by a scalar product and leads to the Gabor
transform:

¥

Sw,t) ={sW,,) = G(t)\TV(t- t)e ™t

-¥

The transform is atwo dimensional function and can be represented as an image wherethetime tis along

the horizontal axis and the angular frequency w is aong the vertical axis. For afixed w, thisformula

corresponds to a convolution between s(t) and W(- t)e"™". Each horizontal line of the transform then
corresponds to afiltering of the signal by a band-pass filter centered at a given frequency with a shape
that is constant as afunction of frequency. The vertical lines correspond to the Fourier transform of a part
of the signal, isolated by awindow centered at a given time. The transform obtained thisway is generaly
complex-valued, since the atoms themselves are complex-valued, giving two complementary images of
the representation [Kronland-Martinet et al., 1987]. The first one is the modulus of the transform and
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corresponds to a classical spectrogram. The square of the modulus can be interpreted as the energy
distribution in the time-frequency plane since the isometry relation gives

E, = (Bl dt = ™ OC)Sw. t)] dwe

where E, isthe energy of the signal. The second image of the representation corresponding to the phase
of the transform is generally less well-known and less used. Neverthelessit contains alot of information.
Thisinformation mainly concerns the "oscillating part” of the signal (Figure 3.2 and Figure3.3). The
derivative of the phase with respect to time has the dimension of afrequency and leads to the frequency
modulation law of the signal components [Guillemain et a., 1996].
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Figure 3.2: Gabor transformwith a good frequency resolution (and thus a bad time resolution).
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Figure 3.3: Gabor transformwith a good time resolution (and thus a poor freguency resolution)
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Figure 3.2 and Figure 3.3 show the Gabor transform of the sum of six harmonic components analyzed
with two different windows. The horizontal axisistime. The vertical axisisfrequency. The upper part of
each picture isthe modulus, the lower is the phase, represented modulo-2p . Their values are coded with
agray scale. In Figure 3.2, the window iswell localized in frequency, alowing the resolution of each
component. In Figure 3.3, the window is well localized with respect to the time, leading to a bad
separation of the components in the frequency domain, but showing impulsesin time due to the fact that
the signal can also be considered as afiltered Dirac comb. In both pictures, the phase behaves similarly,
showing the periodicity of each component. This property can be used to accurately estimate the
frequencies of the components.

The Gabor transform is invertible and one can resynthesize the signa from the analysis
coefficients using the formula

s(t) = % QOB Wt - t)e™ " chuct

3.1.2.Time-scale analysis

The time-scale analysis, or wavelet transform, follows a principle close to that of the Gabor
transform. Again, the restriction to an horizontal line of the wavelet transform corresponds to afiltering
between the signal and a filter whose shape is independent of the scale, but whose bandwidth isinversely
proportional to the scale. The analysis functions are all obtained from a mother wavelet g(t) by trandation
in time and change of scale (dilation) (Figure 3.4). The « grains » are given by

where t isthetime trandation parameter and ais the scale or dilation parameter (a > 0). The wavelet
transform is then given by

1 N —@ -t
St ,a) = = cy(t)géngt
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Figure 3.4: Two different wavelets in the time domain (left), and their Fourier transform (right). In the
wavelet representation, all thefilters are obtained through dilation in time of a mother function, yielding a
constant relative Dw /w bandwidth analysis.

The mother wavelet must satisfy an « admissibility » condition, namely
_ 1 Now)y?
2p w
Thismeansin practice that g(t) is afunction with finite energy and zero mean value. These "weak"

dw < ¥

g

conditions offer a great freedom in the choice of the mother wavelet. For example, by using a mother
wavelet made with two wavel ets separated by an octave, one can detect octave chordsin amusical play
[Kronland-Martinet, 1989].

Another important aspect of the wavelet transform is the localization. By acting on the dilation
parameter, the analyzing function is automatically adapted to the size of the observed phenomena (Figure
3.5). A high frequency phenomenon should be analyzed with afunction that is well-localized in time,
while for alow-frequency phenomenon, this function should be well-localized in frequency. Thisleadsto
an appropriate tool for the characterization of transient signals [Guillemain et al., 1996]. The particular
geometry of the time-scale representation, where the dilation is represented according to alogarithmic
scale (in fraction of octaves) permits the interpretation of the transform as a musical score associated to
the analyzed sound.
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Figure 3.5 Wavelet transform of the same sum of six harmonic components. In contrast with Figure 3.3
and Figure 3.4 obtained through the Gabor transform, one can see that the wavel et transform privileges
the frequency accuracy at low frequency (large scales) and the time accuracy at high frequency (small
scales).

The wavelet transform is invertible and one can resynthesize the signa from the analysis using the
formula

1 \\1 a'todadt
t) =— t,a)gy;—
) cg(D\/_aS( )% af &

This formula corresponds to a granular synthesis technique since it consists of reconstructing the signal

by summing up elementary grains given by ggé_—atg.

3.1.3.Matched time-frequency analysis

For certain kinds of signals, it can be interesting to use some a-priori knowledge in order to
optimize the analysis process. Thisis the case for example of the wave packet corresponding to the
propagation of atransient signal in atube. This example will be precisely studied in chapter 5 whereit is
shown that the signal is composed of a sum of exponentially damped sinusoids. The damping factor is

then given by a = Kw” whereK is a constant depending on the medium. The Fourier transform of such

. . , . 1
asignal constitutes asum of Lorentzian functions S (w) = T) and leads to « bumps »
S riw-w,

localized & w = w,_, whose width is proportional to a,,. In order to efficiently separate the components of
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such asignal, one is tempted to decompose the signal in terms of contributions whose width follows the
theoretical law a(w) (Figure 3.6).
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Figure 3.6: Filters corresponding to a matched time-frequency analysis. The relation betweena andw is

based on the mode behavior in atube: a = Kw*where K has been chosen bigger than in reality for
illustration purposes.

This approach is closely related to the so-called continuous wavel et packet analysis [Torresani, 1995] and
can be viewed as a compromise between time-frequency and time-scale analysis methods.
The method consists then in adjusting the analyzing grains to the components by linking their

width to the frequency by arelation a=f(w).

The analysis process then reads:
M(t,w) = (‘)s(t)w((t - t)a(w))e™Vdt
which, in the flute case leads to the expression:

M(t,w) = CROW((t - t)Kw?)e™ et
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Even though the pictures obtained this way are quite ssimilar to the ones obtained by wavelet analysis, this
matched analysisis of great importance for quantitative analysis, such as the extraction of modulation
laws. Thiswill beillustrated in the next section.

3.2. Extraction of modulation laws

The parameter extraction method makes use of the qualitative information given by the time-
frequency, the time-scale or the matched analysisin order to extract quantitative information from the
signal. Even though the representations are not parametric, the character of the extracted information is
generally determined by the supposed characteristics of the signal and by future applications. A useful
representation for sounds from most resonant systems like musical instruments is the additive model. It
describes the sound as a sum of elementary components modulated in amplitude and in frequency. Thisis
pertinent from a physical and a perceptive point of view (Figure 3.7) .
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Figure 3.7: Gabor representation of the first 75ms of a trumpet sound. Many harmonics with different
time dependency are visible on the modulus picture. The phase picture shows different regions, around
each harmonics, where the phase wraps regularly at the time period of each harmonics.

Thus, in order to estimate parameters for an additive resynthesis of the sound, amplitude and frequency
modulation laws associated to each partial should be extracted from the transform. Of course, this process
must be efficient even for extracting components that are very close to each other and which have rapidly
changing amplitude modulation laws. Unfortunately all the constraints for constructing the representation
make this final operation complicated. Thisis why absolute precision both in time and in frequency is
impossible because of a mathematical relation between the transform in a point of atime-frequency plane
and its close vicinity [Max, 1987] [Kronland-Martinet et al., 1987]. Human hearing follows a rather
similar "uncertainty" principle: in order to identify the pitch of a pure sound, the sound must last for a
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certain time. The consequences of these limitations on the additive model parameter estimation are easy to
see. A high-frequency resolution requires the use of analysis functions that are well-localized in the
frequency domain and therefore badly localized in the time domain. The extraction of the amplitude
modulation law of a component from the modulus of the transform on atrgjectory in the time-frequency
plane smoothes the actual modulation law. This smoothing effect acts on atime interval with the same
length as the analysis function. Conversely, the choice of well-localized analysis functions in the time
domain generally yields oscillations in the estimated amplitude modulation laws, due to the presence of
several components in the same analysis band. It is possible to avoid this problem by astutely using the
phase of the transform to precisely estimate the frequency of each component, and taking advantage of the
linearity in order to separate them, without a hypothesis on the frequency selectivity of the analysis

(Figure 3.8).
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Figure 3.8 : Estimation of the amplitude modulation law of a partial of a saxophone sound. The curveson
the left show the estimated amplitude and frequency modulation laws (as a function of time) using a
straightforward Gabor transform. Several harmonics are present on the frequency support of the
analyzing function, yielding strong oscillations. The curves on the right show the estimated modulation
laws using the filter bank displayed on the next picture. Although the time support remains the same, the
oscillations are automatically canceled by the algorithm.
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The procedure uses linear combinations of analysis functions for different frequencies to construct a bank
of filters with a quasi-perfect reconstruction. Each filter specificaly estimates a component while
conserving agood localization in the time domain. Different kinds of filters can be designed, and it can be
proved that they permit an exact estimation of amplitude modulation laws locally polynomia on the time

support of the filters[Guillemain et a., 1996] (Figure 3.9).
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Figure 3.9: Filter bank in the frequency domain, allowing the estimation of spectral lines. One of the
filtersis darkened. The Fourier transform of each filter equals unity for the frequency it estimates, and
zero for all the others. Itsfirst derivative equals zero for all the frequencies.

The strict limitations of the wavelet transform or of the Gabor transform can be avoided by optimizing the
selectivity of thefilter asafunction of the vicinity of the frequency components. The use of continuous
transforms on the frequency axisis of great importance, since the central frequencies of the filters can be
precisely calibrated at the frequencies of the components. Another important aspect of the musical sound
is the frequency modulation of the components, in particular during the attack of the sound. Here the
judicious use of the time derivative of the phase of the transform offers the possibility of developing
iterative algorithms tracking the modulation laws that does not require the computation of the whole
transform. These algorithms use frequency-modulated analysis functions, the modulations of which are
automatically matched to the ones of the signal [Guillemain et a., 1996].

When the general behavior of the signal is known, matched time-frequency analysis, as described
in chapter 3.1.3, can be directly used to estimate modulation laws of specific signals. In that case, one
can use the same iterative algorithms as the one described above. To illustrate the advantage of this
approach, we have compared the results obtained with estimations based on the matched time-frequency
analysis to the ones based on the Gabor analysis. For that purpose, consider the signal:

s(t) =s,(t) + ,(t)
with s (t) = exp(-a,t)cos(w,t)

s, (t) = exp(-a,t)cosw,t)
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a 1
—+ =— ,wherea, >0,a, >0
a, 20

and

Figure 3.10 represents the estimated amplitude modulation laws of each component s(t) and s, (t)
obtained using a Gabor analysis. The analysing window has been chosen to fit the first component. In
that case, the window is not adapted to the second component, leading to abiasin the estimated amplitude
modulation law. Figure 3.11 represents the estimated amplitude modul ation laws of the same components
s(t) and s,(t) obtained using a matched analysis. Here the analysing window is adapted to both

components using the a priori knowledge of the ratio %. In that case, the width of the analyzing
2

window used to estimate s, (t) is % times the width of the one used for s (t).
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Figure 3.10: Amplitude modulation laws of two exponentially decaying components estimated using a
Gabor analysis. Snce the two damping factors are different, one can see the bias introduced by the
constant width of the analyzing window. For representation purposes, the horizontal axis has been dilated
in the second picture.
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Figure 3.11: Amplitude modulation laws of two exponentially decaying components estimated using a
matched analysis. The adaptation of the width of the analyzing window makes the estimation much more
accurate than in the previous case.

From a practical point of view, the filters designed to extract a given component should be
« analytic » in the sense that they only select positive frequency components. In that case, the transform
is also analytic, allowing adirect computation of the amplitude and the instantaneous frequency. Actualy,
given ared signa s(t), the complex valued analytic signa At) is.
At) =s(t) +iH(s(t) = M, (e,
whereH isthe Hilbert transform. Then, one can show that [Picinbono, 1993] M, (t) = ,/zr ()’ +z(t) is

. . 19 1 9é z(t)u .
the amplitude envelope of the signal and f () = — —f (t) =— — arctg—— . is the instantaneous
p p g (t) 2 1 At) 2p Tt 6 gz,(t)H
frequency of the signal.
The Fourier transform of the analytic signal satisfies the following relation:
i s(w) for w>0
i
z(w)=|’%s(w) for w=20
.“:.O for w<0

confirming that the « analytic filters » only act on positive frequency components.
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3.3. Examplesof flute sound analysis

To illustrate the process described above, | give some examples of flute sound analysis. | present
two types of sounds, namely transient and sustained flute sounds. The sounds have been recorded in an
anechoic room in order to avoid room acoustic effects (reverberation).

The transient sounds have been obtained by rapidly closing a fingerhole without exciting at the
embouchure of the flute. The spectrogram of a transient sound shows that the low frequency components
have alonger duration than the high frequency components.
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Figure 3.12: Spectrogram for a transient sound in a flute obtained by rapidly closing the fingerhole
corresponding to the note D1. The horisontal axis corresponds to the time, here given in samples
( fs=48000H2), and the vertical axis corresponds to the frequency.

In order to get a closer look at the behavior of each spectra component, their amplitude
modulation law can be estimated by time-frequency techniques. In chapter 5 the behavior of the
components of such atransient signal is discussed, and theoretical results are compared to real ones.
From the representations of the spectrogram and extraction of the amplitude modulation laws it can be
seen that the energy of the spectra components is exponentially decaying, and that high frequency
components are more rapidly attenuated than low frequency components. Figure 3.13 represents the
amplitude modulation laws of the first and the sixth component of the transient flute sound obtained
through the extraction technique based on the matched time-frequency analysis described in section 3.1.3.
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Figure 3.13: Amplitude modulation laws of the first and sixth components of the transient sound whose
spectrogramis presented in Figure 3.12 ( fg=48000H2).

From the analysis of continuous sounds several phenomena can be observed. As an example
Figure 3.14 shows the spectrogram of atransition of aflute sound from A1 to A2 (whose fundamental
frequencies are respectively 440Hz and 880Hz). As expected the interva between the spectra
components is doubled after octaviation. In addition, when studying the part of the spectrogram
corresponding to the note A2, one can observe some remaining « under harmonics » corresponding to
the odd harmonics of the note A1. Thisis due to the fact that the modes of the tube still are the same,

since only the way of exciting them has changed. The source-resonant model of the flute in chapter 6
conveniently describes this behavior.
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Figure 3.14: Spectrogram corresponding to a transition of a flute sound from Al to A2 ( f;=48000H2).
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Using a spectra line estimation technique based on the matched time-frequency method, one can
represent the amplitude and frequency modulation laws of each component of the sound. Figure 3.15 and
Figure 3.16 represent such modulation laws for the third component of a 8 seconds long flute sound
(whose fundamental frequency is 440 Hz). The oscillating part of the curve corresponds to natura
fluctuations and leads to the so-called tremolo and vibrato which are strong « signatures » of the sound.

Such data are of great importance for characterizing the sound and constructing synthesis models such as
the additive moddl.
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Figure 3.15: Amplitude modulation law of the 3rd component of Al ( fo=440H2)
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Figure 3.16: Frequency modulation law of the 3rd component of Al ( fo=440Hz2)
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4.  Construction of a group additive synthesis model: Application to the flute

In this chapter we shall see how signal models can be constructed to simulate a given sound. The
flute sound, or at least the deterministic part of it, will here be considered. Aswill be seen in chapter 6,
the flute sound can be decomposed into a deterministic and a stochastic part. The deterministic part is
mainly related to the modes of the tube while the stochastic part is related to the turbulence phenomenas at
the excitation. To design a digital flute mirroring as closely as possible areal one and permitting in
addition intimate transformations on the sound by altering the synthesis parameters, a signal model based
on additive synthesis whose parameters are estimated by the analysis of real soundsisintroduced. Some
results concerning the attack transient and the vibrato obtained with the help of time-frequency techniques
discussed in chapter 3 will be presented.

The aim of this chapter is to estimate the parameters A, (t) and v, (t) so that the sound can be

simulated using the model:

st) = @ A®cosiw,t + (Y, (W)du)

Thismodel can be dramatically smplified if one can group the A, (t) and thev,(t) . In this case the model
Is called a group additive synthesis model

t

st) = A, a, costw,t + k(y(Uc)

4.1. Modeling of the attack transient of the flute sound

One of the key aspects characterizing flute-like instruments is the attack transient. Authors as
Balibar [Balibar, 1981] and Rakowski [Rakowski, 1965] state that the attack transient is among the
longest for wind instruments, and that the period of growth of aflute tone can be divided in two parts;
one where the proper pitch cannot be detected, followed by a shorter part where the sensation of a pitch
suddenly appears to the listener. It is accompanied by a sudden change in speed of growth of the
harmonics. We will ssimplify this theory by modeling the attack transient with a unique law reflecting the
growth of the harmonics.

To model the transient part of the sound (the attack), a correlation between the behavior of the
amplitude modulation law of each component and the total energy of the sound (which isrelated to the jet
pressure) must be determined. Figure 4.1 shows the beginning of the amplitude modulation laws of the
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first five harmonics corresponding to a flute sound whose fundamental frequency is 261Hz (note C1).
These amplitude modulation laws have been calculated by time-frequency techniques discussed in chapter
3.
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Figure 4.1: thefirst 0.4s of the amplitude modulation laws of the first 5 harmonics of a flute sound
whose fundamental frequency is 261Hz (note C1).

The steepness of the amplitude modulation laws during the attack can be correlated to the amplitude of the
total sound. This correlation can be visualized by representing the amplitude modulation law of each
component versus the amplitude modulation law of the whole signal. In Figure 4.2 the curves
corresponding to the first and the third components of the flute sound are shown. The curves are getting
steeper as the component rank increases. In addition a deviation due to the different attack and decay time
of the energy of each component is observed. This deviation corresponds to an hysteresis effect which
increases with the frequency of the components. This behavior has not been taken into account in the
model.
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Figure 4.2: the energy density of components one and three versus the energy density of the whole sound

Thus the amplitude modulation law A, of the n’th harmonic can be roughly linked to the total amplitude
A, of thesignal by alinear law: A, = K, +aA..
The constant K, depending on the mode rank is related to the delays between the spectral

components. Measurements show that K, increases roughly proportional to n. Thus a delay between two

successive components (n-1) and n, is proportional to pE Thisisin accordance with the measurements

made directly on the modulation laws of the harmonics (Figure 4.1).

The stegpness of the amplitude modulation laws of the n’th component during attack is found to
increase like (0.75+0.3(n-1)) times the total amplitude of the sound. Thus the fundamental component is
the only component whose steepness of the amplitude modulation law is less important than the steepness
of the total amplitude. The law is then:

A =K, +(0.75+0.3(n - ))A

As aready mentioned, the observed hysteresis effect has not been taken into account in this formula. In
order to model such an effect, the constant K, should be adjusted in accordance with the "width" of the
hysteresis, so that K, -values applied during the attack of the sound are different from the ones applied
during the decay.

The synthesized sound calculated from the amplitude modulation law is « poor » compared to a
real flute sound. Thisis partly due to the absence of pressure fluctuations during the steady state part of
the note. Grey [Grey, 1975] states that the steady state part of the sound isimportant in judging the
timbre. The vibrato hel ps the identification of a sound. In the next section | therefore present a method for
modeling the vibrato of the sound.
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4.2. Modeling of the vibrato of the flute sound

By direct measurements, Fletcher [Fletcher et al., 1990] has shown that the pressure fluctuations
producing the vibrato of aflute sound causes afrequency variation of 5 Hz and an amplitude variation of
about 10% of the blowing pressure. By studying the admittance of the jet and the pipe when the pressure
Is fluctuating, Fletcher has found that an increase in blowing pressure gives a small increase in sounding
frequency [Fletcher et al., 1990]. When the blowing pressure decreases, the frequency falls. This
explains the variation in frequency when playing avibrato. The player uses pressure fluctuations to obtain
this effect.

To invedtigate the relation between the frequency variations and the pressure fluctuations,
amplitude and frequency modulation laws have been calculated by time-frequency techniques that were
presented in chapter 3. The flute sound that has been analyzed this way has a fundamental frequency of
440Hz, corresponding to an A1. The vibrato depth of each frequency modulation law can thus be
measured together with the frequency of the vibrato and the correspondence between the pressure
fluctuations and the frequency variations.

The measurement of the vibrato depth Dw for each component have shown that it increases with

the harmonic rank and that theratio bw is constant as shown in Figure 4.3. This means that a harmonic
w

sound remains harmonic when avibrato is applied.
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Figure 4.3: Vibrato depth versus harmonic rank for a flute sound whose fundamental frequency is 440
Hz.

Asshown in Figure 4.4 the vibrato is in phase with the amplitude variation (tremolo). Thisis due to the
fact that flute players use pressure fluctuations to produce vibrato.
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Figure 4.4: Amplitude and frequency modulation law of a flute sound (A1) with vibrato. The sampling
frequency corresponding to thisfigureis fs=100Hz.

One can therefore pilot the frequency modulation from measurements of the air jet pressure. The
frequency variations of the vibrato is about 5Hz for al notes (and for any flute player). Fletcher [Fletcher,
1975] has explained this by calculating the resonant frequency of the system abdomen-diaphragm-lung
given by

1 A

f_ 1
2p \ mv

where

V isthe volume of the lung cavity (around 10" m®),
pistheair pressure (around 10°Pa),

A isthe area of the diaphragm (around 3x10° n’) and

m is the mass of the content of the abdomen (around 10kg).

This resonant frequency is found to be approximately 5Hz which corresponds to the vibrato frequency. A
second explanation also proposed by Fletcher isthat the diaphragm is maintained in the correct state of

tension by opposing sets of muscles controlled by neurological feedback |oops whose oscillation loop is
closeto 5Hz.
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From a practical point of view, the vibrato v(t) can be estimated by a bandpass filtering of the
signal amplitude A;. A filter selecting a narrow band centered around 5 Hz is appropriate. | used a
Butterworth band pass filter made with two order 2 low and high passfilters. The Butterworth filter has
been chosen for its good frequency behavior, especially its stability and high slope. A lot of filter design
technigues have been developed [Hamming, 1989] and numerous filter design software exist. To design
thefilter, | used functions provided by the MATLAB signal processing toolbox which is described by T.
W. Parksand C. S. Burrus. [Parks et. al., 1987].
The filtering satisfies the difference equation

V(M) = CQ a A - k) + & bv(n- ),

k=0 k=1
where
6.0000 €0.2677 ¢
& 3.9995( €0.0000 U
a =©59986 U b = €0.5353Ux10°’
€ 3.9986U €.0000 U
.9995 €.2677 8

and C isa constant adjusting the depth of the vibrato.
The frequency response of thefilter isgivenin Figure 4.5.

Filter for vibrato extraction
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Figure 4.5: Frequency response of the filter used for extracting the vibrato from the amplitude A, of the
signal.
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Figure 4.6 represents the envel ope pressure measured at the cork level (close to the embouchure) of the
flute and used at the entrance of the filter. Figure 4.7 represents the extracted vibrato. To verify the
auditive performance of this approach, the extracted vibrato was applied to a synthetic sound whose
spectrum was close to that of aflute. The synthetic sound was presented to several listeners who found
the frequency variations to be natural.
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Figure 4.6: envelope of the pressure used at the entrance of the Butterworth filter.
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Figure 4.7: extracted vibrato obtained from the pressure envelope.
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These investigations have led to a group additive synthesis model for the flute sounds given by

Sn) = & {Ky +(0.75 +0.3(k - D)Ar()} cos(lowo = +Kj ().
k=1

S
withj (n)=j (n- 1)+ «n).
Even though the sounds generated this way are of good quality, this ssimplified model doesn’t allow huge
dynamic variations since the growth of the components is unbounded. Moreover, an important feature of
the flute sound, the turbulent noise, is missing in this model. The state of this typical noise depends upon
the physical characteristics of the tube, and is changing during the play (since the « effective length » of
the tube changes). Thus physical considerations of the instrument’ s behavior should be taken into account

to accurately model the sound.
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5.  Sound modeling using a physical approach

In chapter 2.2 different physical approaches of the synthesis processes were discussed. A detailed
description of the waveguide synthesis model was given, leading to a propagation model in a bounded
dissipative and dispersive medium. The parameters of such models can be found either from the solutions
of the basic physical equations or from the analysis of real sounds. Theoretical parameters which are
often biased since they are resulting from approximations, can thus be matched with the real parameters.
In the case of the flute and the guitar, relevant parameters for a wave propagation model such as
dispersion and dissipation can be estimated both by studying the solutions of the basic physical equations
and by the analysis of real sounds. The dispersion introduces an « inharmonicity » between the partials,
and the dissipation yields a different decay time of the components. These two effects can be measured on
real sounds. To use the waveguide synthesis model in practice, | shall describe away of building the
filters of the model that will reproduce the dispersion and dissipation phenomena.

5.1. Physical description of 1-dimensional systems

In this section a physical description of the propagation of longitudinal waves in fluids (wind
instruments) and transversal waves in solid media (string instruments) is given. These two systems can
be treated similarly, and interesting differences between the two systems can be observed.

5.1.1.Propagation of longitudinal waves in aresonant tube

The one-dimensional wave equation of the acoustic pressure y inside a tube when visco-thermal
losses are taken into account can be written [Kergomard, 1981]:
1 Tyxnb Inx,r.t)
c®  ft? 1t
with boundary conditions y(O,r,t)=y(L,r,t)=0. |, represents characteristic lengths (l,, is of order 10°m

- Dy(xr,1) - l—(h:VD =Y (xr,t) (5.1)

in free airfilled space). When the acoustic pressure isto be determined in abounded airfilled domain (like
atube), |, depends upon the friction near the domain boundary. Inthiscase |, isnot easily determined.

cisthevelocity of sound, and Y isatime-dependent source.

When the pressure is to be determined inside the tube, the Laplacian of equation (5.1) should be
represented in terms of cylinder coordinates. When the wavel ength of the sound wave transmitted along
the interior of the tube islarge compared with the transversal dimension of the tube, the fluid motion is
predominantly parallel to the tube axis, and the wave motion is very nearly one-dimensional. That is, for
frequencies below the cut-off frequencies of the higher order modes, only the fundamental mode (0,0)
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can propagate. The cut-off frequency of the (m,n)th mode can be found from the expression of the
transverse eigenfunctions [Morse, 1968], and is given by

fC
2b

where
a,, , depends on the mode (a,, = 0.5861,a,, = 0.9722,a,, =1.2197,a, = 2.2331.....),

b isthe radius of the cylinder, and
cisthevelocity of sound in the medium.

For a tube with the dimensions of a flute resonator (b=9.5mm), the smallest cut-off frequency is
f.,o = 5.2kHz. The next ones aref,,, =8.7kHz and f_,, =10.9kHz. | shall therefore assume that the

2

wave motion isone-dimensional, so that D = % in (5.1) and y=y(xt).

To find a solution of equation (5.1), we search for a decomposition of the solution into an
orthonormal basis whose elementsare sin(np lL( ), where L isthe length of the tube. Thus, if the function

y(x,t) has only afinite number of maximaand minimain the interval (O,L) and if it has only afinite
number of finite discontinuitiesin (0,L) and no infinite discontinuities (Dirichlet conditions), one can
write

Y%= 2 @ v, Osin(np )

where
L
N X
t) = x,t)sin(np —)dx
Yn(t) 0()(( )sin(np )
denotes the finite sine transform of y(x,t).

By partia integration of the vy, (t) term when the boundary conditions are assumed to be
2

y(0,t) = y(L,t) = 0, wecan calculate % y(xt):

L

L
R . X, . _ np®. . X
W y(xt)sin(np E) dx =- > g(x,t)sm(np E)dx
and thus
2 2
Ty =2y

The homogeneous version of (5.1) can now be rewritten as
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2 2.2
LI, 07 b

np” yt) _
S T

Lt
Let usnow consider asourceterm Y (X, t) applied to the cylinder at apoint X,. The finite sine transform

of this source term is given by
t

Y. (0 =Y @ Jx- %)sin(np %)dx = Y (sin(np ﬁli)

Equation (5.1) with the source term can now be written:

2 2.2
17%®, nPp

n’p? fy,(t)
" c? qt? L2

Ihv —
yn(t) +— L2 ﬂt - Yn(t) (52)

To solve equation (5.2), the Laplace transform can be applied. Actually, for certain functions y(t) the

¥

Fourier transform is not defined (when dy(t)ldt is not convergent), and one may consider the function

-¥
y,(t) = e %y(t), where gisapositive constant and y,(t) =0 if -¥ <t <0. For aflute the pressure

y,(t) =0 for - ¥ <t <0 andtheinitial conditions of the Laplace transform are zero, which simplifiesthe

caculations.
¥ ¥

It can be shown [Sneddon, 1951] that if @y(t)ldt is not bounded but (‘)e"“|y(t)|dt is bounded

g +H¥
for some positive value of k, then theinversion formula y(t) = 2_1| (\)’ (p)e™dp holdswith g> k.
g-i¥

When applying the Laplace transform to the wave equation one obtains

r,|2 2

: (P)+2 =5 py(p) = Y, (P)

and
Y Y
YolP) =3 nzfopi = ”(p)2 - (5.3)
+ = hv 2 +an +Wn
c’- d c L7 |_2 7(P+a)
where
r_]2p2

a, =l ,c—= T are damping factors corresponding to each mode, and
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an 2 n4p4 n4p 4
2= ¢ T 12 c? a0 =(nw,)’- aZ arethe corresponding eigen frequencies. Theterm 172¢* a0

in the frequency expression represents the "inharmonicity”, and it depends on the value of |,,,. It is

w

interesting to note the close relation between the inharmonicity and the damping factors. This is in
accordance with the Kramers-Kronig relations stating that for a causal system there is no dispersion
without dissipation [O’Donnell et al., 1981].

The theoretical damping factors areillustrated in Figure 5.1 as a function of the mode number for
atube of length L=58 cm, corresponding to the length of the flute body. We can see that the damping
factor alphaisincreasing when the mode rank is increasing, which means that the attenuation of the
components increases with the mode rank.

thecretical alpha
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04t
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Figure5.1: Theoretical damping factors as a function of the mode rank corresponding to a tube of length
L=58cm.

In Figure 5.2 the theoretical inharmonicity is plotted. In the harmonic case when f_ = nf,, the
value of the curve would be one for any mode. We can see that the "inharmonicity” in the flute case is
very small and that f, < nf, which means that the partials of the spectrum get closer as the frequency

increases.
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Figure 5.2: Theoretical inharmonicity of the modesin a tube.
A comparison between Figure 5.1 and Figure 5.2 shows that when the damping factors increase, the
Inharmonicity increases.

The inverse transform of the expression (5.3) can be caculated using the Faltung theorem
[Sneddon, 1951]:

If F(p) and Y (p) are the Laplace transforms of the functions f(x) and g(x), then

g+i¥ X

2ipi CF (P)Y (Pe™dp = Cp(y) F(x - y)dy

g-i¥ 0
Applied to our case it gives

Yolt) = —7—— (‘)Y(u)si n(w, (t- u))e®“ “du (5.4)

2''n 0

To link the propagation to a synthesis model (signal processing), we seek an expression of the response
when applying a punctual dirac source to the tube (Y, (u) = d(u) ). This response will be correlated to the
impul se response of the system. This gives

42



and the solution of the wave equation with asourceterm d(x - X,) >d(t) isgiven by

. Xo+ X
5 & sin(np _L)Sm(npf)
y(xt)=—Qa 7 sin(w t)e ™ (5.5)
L n=1 —2Wn

c

This result shows that the response to a punctual dirac source in atube is a sum of sinusoids at the
frequencies w,, exponentially damped with adamping factor a,,. Thisis an important result indicating the
behavior of the modes in atube. Nevertheless, this solution corresponds to a tube without holes and with
only plane waves propagating and gives therefore only an idea of the behavior of the modesin awind
instrument. In spite of these ssimplifications, the spectrum of the theoretical impulse response as shown in
Figure 5.3 israther close to the spectrum of an impulse response of areal wind instrument, as will be
seen in section (5.3.1).

apectiim of the theoretical impulae responge
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Figure 5.3: Soectrum of the solution of the wave equation for a tube of length L=0.58m, a characteristic
lengthl,, = 4.5" 10 * mand an excitation point x,=0.017m corresponding to the distance between the

center of the embouchure hole of a flute and the cork.
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5.1.2.Propagation of transverse waves in a stiff string
The transverse displacement y(x,t) of astiff string is described by the equation [Valette, 1993]:
2 2 4
L \l :/T(t>2<,t) 1 ;E:;,t) cg ] 1>T(X>§,t) N
where r | isthe mass per length unit (kg/m), T isthe tension, E isthe Y oung modulus, | isthe quadratic
moment (m*) and R is the mechanical resistance per length unit(Nsm?). It is convenient to assume that R
takes into account the losses during the propagation (friction in the air, viscoel astic |osses etc.):

2ph +2pd,/hrmrw ;
R(w) = 2 4y EIzsw

rw

iy(x,t) _
R i = f(x,1),

where h isthe viscosity of the air (Pas), d isthe diameter of the string (m), r , isthe air density (kg/m®)

and d,, isthe angle of viscoelastic losses. The admittance on the bound is supposed to be negligible as

well as thermoelastic |osses and internal 1osses due to friction in the string.

1y(0.1) _ 1°y(Lx) _
x? 2

decomposing the solution into asine basis (as in the tube case), and by applying asourceterm Y (x,t) to

The boundary conditions are assumed to be: y(0,t) =y(L,t) = 0. By

the string at apoint x, sothat Y (t) =Y (t)sin(np ﬁli)’ the equation can be rewritten in asimilar way as

equation (5.2), namely:

TN, P IO, g 6O % FE Ty = v, 0

Looqt? Mt 4

By applying the Laplace transform on this equation, the solution can be written as:

v (p) = Y, (p) __ Y.p
n 2.~2 4.4 2 2
i N R W
L L
where
R(w) : ,
a, = or are damping factors corresponding to each mode, and
L
2 4 4 2
w, = il nZE +E ne - R(WZ) are the corresponding eigen frequencies.
ro L ro L 4r ¢

In Figure 5.4 the theoretical damping factors are plotted as a function of the mode rank for a string of
length 0.9 m. The damping factor a phaincreases when the mode number increases, but compared to the
tube case the damping factors are very small. This states the fact that the modes in a string are much less
attenuated than the modesin atube.
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Figure 5.4: Theoretical damping factors as a function of the mode number.
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Figure 5.5: Theoretical inharmonicity of the modesin a string
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Figure 5.5 shows the theoretical inharmonicity of the modes in a string. One can see that the
inharmonicity of the modes in a string is much more important than in the tube case, and that f, > nf,
which means that the frequency interval between the partials of the spectrum gets bigger as the frequency
increases.
The inverse transform of y, (p) issimilar to the tube-case (5.4) namely

sin(np =2) !

(1) = ———L= QY (@singw, (t- u)e ™ Vdu

n

And the general solution of the wave equation when applying a punctual dirac sourceat X = X, :

3§ sin(np 22)sin(np 2)
ot =+ a : =
n=1

In Figure 5.6 the spectrum of this expression is given. The length of the string is L=0.9m, the excitation
point is X,=0.2m and the density is r , =0.0015kg/m.

sin(w t)e "
rw, (w,t)
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Figure 5.6: Spectrum of the theoretical impulse response of a string when the excitation point is
X,=0.2m.
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Compared to the spectrum of the theoretical impulse response of a tube, the spectrum of the theoretical
Impulse response of astring is « richer ». The periodical spectral modulation is due to the choice of the
excitation point X, .

5.2. Construction of a propagative synthesis model

In chapter 2.2 a general propagation model of a bounded dissipative and dispersive medium is
described. Figure(2.3) illustrates a propagation model with delay lines, dispersive and dissipative filters.
In what follows this model is further smplified by grouping the delay lines into one delay line d
corresponding to the time it takes for the wave to propagate back and forth in the medium (tube or string),
and describe the construction of afilter F taking into account dispersion and dissipation phenomena as
well as reflections at the extreme limits of the medium. The parameters being used for this purpose are the

damping factors and the frequencies of the partials. These parameters can either be found from the
theoretical equations or from the analysis of real sounds.

5.2.1. Characterization of the loop filter

Figure 5.7 illustrates our waveguide model, where E corresponds to the excitation signal and S
corresponds to the output signal obtained at the point where the vibrations are measured.

E
»(-P Delay S o

Figure 5.7 Waveguide model
The transfer function of the system is given by

~ e—iwd
Tw) = 1- Fwe™ ’

whered isthedelay givenby d = % = Z—CL , Where f, isthe fundamental frequency and L isthe length

1

of the string.
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If this model iswell adapted to the simulation of propagation given by the previous equations, we
expect the power spectra density of the transfer function to be a sum of lorentzien functions

z(x) = m like the power spectral density of the theoretical impulse response.

Let uswriteF(w) = |F(w)|e". Thetransfer function of the waveguide model can then be written

Tw) = g™ ~ e " _ cos(wd) - isin(wd)
C1- [Fw)e e™ T 1- [Fw)e ™" 1- |F(w)(cos(wd - f)- isinfwd - f))

and the power spectral density of the system, namely S(w) is given by:

cos(wd)® + sinwd)?
(1- |F(w) cosiwd - f))* + (F(w)|sin(wd - f ))*
_ 1
T 1+ |F(wW)|? - 2|F(w)|cos(wd - f)

Sw) = TW)T(w) =

The maximaof S(w)are obtained when cos(wd - f) =1, thatisfor w, = 2np +f

. These frequencies

correspond to the "peaks" of the spectrum, and one can see that when F(w) isrea valued, f =0, and
the spectrum is harmonic (equation without 10sses).

In order to approximate the behavior of these resonances, we suppose that the "peaks’ are
narrow-band enough to be considered as separated in the frequency domain. This assumption is generally
reasonable for musical instruments.

Close to the resonance peaks, w = w,, + e, where e << 1. Thisgives

ée2np +f o u

cos(wd - f) =cos|(w, +e)d - f | = cosj. +e-d-f,

s - 1) = cosl o, +e)d - 1] = cosgg—— vegd - g
= cog2np +f + ed - f) = cos(ed)

Since e << 1, we use alimited expansion of cos(ed) in the neighborhood of O, that is

2 12
cos(ed) » 1- e2d .

The power spectral density S(w) for w » w,, can now be written as

1

Siw,,) = a2d? (5.6)

1+|Fw,)* - 2JFw,)a- > )
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On the other hand, if one consider an exponentially damped sinusoid with amplitude C, (corresponding

to the theoretical impul se response)
s, () =Ce e
with Fourier transform
C,

S )

its power spectral density is given by
C

SW) = SWSW) = s

Similarily, by considering the local behavior of S (w) around the resonance frequency (w =w, +e), we

get:

2

§(W) » —=2 5.7)

a’+é¢

By comparing (5.6) and (5.7), and by assuming that the input of the waveguide model E(w,) takesinto

account the amplitudes of the modes, we can find an approximation of |F(Wn)| depending on the damping

factorsa, andthedelay d .

[E@w,)’ __GC
242 T 2 2
1+|Fw, ) - 2[Fw,)(1- e; ) an7E
by aterm to term comparison
2
2da
(- [Fw,))* =|Ew,) 2 (58)
2 62
and  |F(w,)e’d* =|E(w,) I (5.9
- . _ [E@) | |
From equation (5.9) weseethat C. = W . Equation (5.8) can now be written as

(- [Fw,))* =a,IFw,)d’

which gives the expression of the modulus of the filter F(w) at the " peaks’:

2+d’a’+ J(2+aid’)*- 4
2

|Fw, ) =
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Since higher harmonics decrease faster than lower harmonics, the minus is chosen in the solution of
|F(w,). The phaseis:
fw,) =w,d- 2np
Theinput signal |E(w, )| can be modeled as the impulse response of afilter whose response at w,

is given by Cnd\/|F(wn)| :

Figure 5.8 and Figure 5.9 illustrate the modulus of the loop filter F when using the theoretical
valuesof a,, w, andC, .
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Figure 5.8: Modulus of thefilter F in the tube case
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Figure 5.9: Modulus of thefilter F in the string case

From equation (5.5) the amplitude in the tube case is

: Xon o X
- sin(np I_)sln(np L)

n

wherex, isthe excitation point.

As expected, the tube filter is much more low-pass than the string filter. This means that the modesin the
tube are much more rapidly attenuated than in the string. In addition there are much more significant
modes in the string case than in the tube case, which corresponds to what we expected, since the
spectrum of a sound from a string (Figure 5.6) is much « richer » than the spectrum of a sound from a
tube (Figure 5.3).

5.2.2. Construction of the loop filter

From the discrete values of the loop filter found in the previous section we now want to construct
an impul se response which takes into account dispersion phenomenain addition to dissipation. Although
several agorithmsfor constructing such filters aready exist ['Y egnanarayana, 1982], these agorithms are
based on approximations and are therefore not precise enough for resynthesis where we want to
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reproduce a sound which ressembles as closely as possible to the original one. Thisis the reason why a
new way of constructing such filters based on the time-frequency representation of atransient sound must
be designed. Let us consider the time-frequency representation of atransient propagating in a piano string
(Figure 5.10). As we can see, the propagation of the transient in a dispersive and dissipative medium
leads to a del ocalized wave packet. As we can see the energy of the transform islocalized along curves
called the ridges of the transform [Guillemain et al., 1996]. The ridges are related to the group delay
t,w)=- % of the signal (where f (w) represents the phase of the Fourier Transform of the signal)

[Max, 1987]. They are related to the way the propagation speed depends on the frequency.
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Figure 5.10: Modulus and ridge of the Gabor representation of the first 66ms of the ponctual speed of a
piano string measured by laser vibrometry. The black curves correspond to the ridges related to the group
delay of the wave. One can see that deformation increases with time.

The restriction of the time-frequency representation along the ridge contains most of the information
concerning the signal and consequently allows an approximate reconstruction of it.

In the case of the Gabor representation the reconstruction consists in summing the grains w(t - t )& * )
with weight given by the values of the transform along the ridge. In asimilar way, the impul se response
of the loop filter can be constructed by summing up elementary grains along the group delay curve

(Figure5.11).
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group delay (t=t,)

-

t

Figure 5.11: Construction of the impulse response of the filter F by adding wave packets along the curve
corresponding to the group delay

The genera expression of the impulse response of the filter can then be written:

K W
f(t)= é, {ak cos(w, (t- t,) + b, sinfw, (t- tk))}e s’

k=1
In order to find the coefficients a, and b, corresponding to the amplitudes of the elementary grains, |
chose modulated gaussian grains, which are invariant by Fourier transform. The Fourier transform of
each grain is then given by a gaussian function centered at the frequency of the grain. The amplitudes of
the elementary grains correspond to the coefficients a, and b, so that the sum of these grains makes a

continuous curve passing exactly through the values of the modulus of the filter found in the previous
chapter (Figure 5.12).

GF(Wn X)A

/

Figure 5.12: Construction of a continuous filter response by summing up gaussian functions
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Modulated gaussian grains also have other advantages:
1) gaussian functions represent the best compromize of localization both in the time and the frequency
domains,
I1) gaussian functions decrease faster than any polynomial functions,
i) the Fourier transform of area gaussian function isreal valued, which meansthat it does not alter the
phase of the functions,
Iv) gaussian functions were used in the first applications of wavelets effectuated by Morlet and in the
Gabor representation. They are easy to calculate, and have shown a good numerical stability.

The expression of the continuous filter response is now given by:

K s 1 1
sJ2p o |, - w-w, s ? - = (ww,)’s 2
D 4 fa e e

k=1 |

1 .
w-w, )?s? —E(W+wk)2's2 u

)ge-imk

F(w) = )- ib (e ?

where

K isthe number of components,

a, and b, aretherea and imaginary parts of the amplitude the k'’ th component,

w, isthe frequency of the k’th component,

S isthe standard deviation of the gaussian functions (related to their width),

t, isthe group delay.

The standard deviation s was chosen so that the intersection between the first gaussians arises when the

value of the functionsis i .Thatis
J2

S :i log(2)
w

0
The group delay is due to the inharmonicity of the signal and to the different propagation velocity of each
component. It isgiven by:

k
e =T- K =—-—
fi

e |

where T, isthe period of the fundamental and T, the period of the k’th component.
When imposing the continuous filter response to have the same values at the resonance peaks as the
values of the modulus of the filter found previoudly, the coefficients a, and b, are given by:

(?kg 2
eb,o s2p
where A isamatrix defined by four matrixes:

ALK FWw,)

@K Ak

A(j’k)_éAS(j,k) A4(j, K)o
with

54



1
-wy )% ? -§(w+wk)2

AL(K) = (e 2" " Joos(w )

1 1
-2 (w-w, )% ? - S (wHw ) s 2 .
A2(j,k) =(e ? -e? )Sm(thk)
. --:;(W-wk)zs2 --;'(W+w 52
A3(j,k) =(e )sin(wt,)
. _ '_;(W'Wk)z 2 '%(W*'WK)ZSZ
A4(j,k) = (e -e )cos(wt,)
and
Fow) = gFF(Wk)| COS(W )0
‘ dF(w, ) sinw,t,) 3

Thisfilter construction method allows an exact reconstruction of dispersion and dissipation at the
resonance peaks giving a high quality resynthesis of transient sounds.

Figure 5.13 and Figure 5.14 show the theoretical impulse response of the filter F calculated by the
proposed method in the tube case and in the string case.

impulse respongse of the filter F inthe tube case
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Figure 5.13: Impulse response of the filter F in the waveguide model using theoretical values for damping
coefficients and eigen frequencies corresponding to the tube case ( f,.=32000Hz2)
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impulse response of the filker F inthe slring case
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Figure 5.14: Impulse response of the filter F in the waveguide model using theoretical values for damping
coefficients and eigen frequencies corresponding to the string case ( f;=32000H2)

It isinteresting to note that in the tube case the impul se response is almost symmetric due to the weak
inharmonicity while it in the string case is strongly asymmetric due to the important inharmonicity of the
modes in the string. In the tube case where f < nf , high frequency components are propagating « more
slowly » than low frequency components. In this case the group delay t, is negative. In the string case

where f. > nf, t, ispositive.

5.3. Examples of sound modeling

In order to compare theoretical and real values of the parameters characterizing the medium, real
sounds from aflute and from a guitar string have been recorded. In the flute case transient sounds were
measured in an anechoic room by rapidly closing afinger hole without exciting at the embouchure. This
sound is interesting since it can be heard during the instrumental play. In the string case the vibrations of
aguitar string were measured by the use of alaser vibrometer.

5.3.1.Modeling of the flute

The theoretical equations show that the response to a punctual dirac source in atube isasum of
sinusoids at the frequencies w,, exponentially damped with adamping factor a,. Thisis an important
result indicating what the behavior of the modes in atube may be like. The amplitude modulation laws of
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the spectral components of atransient signal confirm the theoretical results. Thus the damping factors a,,
and the frequencies w/,, can be found from the analysis of real sounds. Figure 5.15 shows the amplitude

modulation law of the first component of the spectrum of atransient flute sound obtained using the
« matched » time-frequency analysis method. The damping factor can be found by measuring the slope
of this amplitude modulation law in alogarithmic representation.

amplitude modulation law for a ransisnt sound in a fluks
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Figure 5.15 Amplitude modulation law of the first component of the spectrum of a transient flute sound
(linear representation) f.=48000Hz

The shape of thefilter F(w) isthe same for different lengths of the tube (corresponding to
different notes). As seen in section 5.2, the filter F(w) depends on the delay d. Figure 5.16 shows the
theoretical filter for L, L/2, L/4 and L/8, where L=0.58m.
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filter F for different lengths of a tube
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Figure 5.16: Evolution of thefilter F due to changes of the tube length L.

The relation between the filter and the length is given by an homotecy (change of scale):
if F(w) isthefilter corresponding to the tube length L, and F,_(w) the filter corresponding to the tube
length L, then

- WO L
FL(W)—Fé‘/r_]g,wheren— L

Thisis an important result for the real-time implementation of the model asis seen in chapter 7, since
changing the delay in the physical model (changing the note in an instrument) only necessitates a dilation
or acontraction of thefilter.

Asdiscussed in section 5.1, the value of |, in the wave equation of a tube, depends on the

friction near the body of the instrument. It can be determined by comparing the theoretical damping
2.2

factorsgivenby a, = Ihvc% and the real damping factorsasseenin Figure 5.17.
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Figure5.17: Damping factorsin thereal (*) and theoretical (+) cases

From the experience, the estimated |,,, leading to the best superposition of the theoretical and experimental

curvesis of order 10 *m. This value is much higher than the theoretical valuein free field, which shows
that the friction of the air near the body of the instrument can be seen as responsible of most of the losses.
Figure 5.18 displays respectively the theoretical and the estimated inharmonicity of the modes.
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0

The inharmonicity corresponds to the ratio between the frequency and the perfectly harmonic case
where f, = nf; ( f, being the fundamental). The estimated frequency shift is larger than the theoretical
one. Thisis probably because of the simplifications of the theoretical model (plane wave, tube without
holes...).

Figure 5.19 and Figure 5.20 show the Fourier transforms of the input E and the loop filter F
corresponding to the real response of the flute, measured as described previously. As mentioned in
section 5.2.1., the input E of the waveguide model takes into account the amplitudes of the modes. One
can see that the amplitudes of the first modesin areal signal are strong, and that the amplitudes of the
higher harmonics are rapidly attenuated. The Fourier transform of the loop filter F shows that in the
theoretical case thefilter is much more selective than in the real case. This means that in the real case the
high-frequency components of the spectrum are less attenuated than in the theoretical case. This may be
due to the smplifications done in the theoretica study where only plane waves were assumed to
propagate in a tube without fingerholes. In addition, the source was not the same in the real and in the
theoretical cases, since a punctual dirac source was used to calculate the theoretical impulse response,
while the « real » impulse response was obtained by rapidly closing afingerhole.
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Figure5.19: Fourier transform of the input signal E corresponding to atransent in areal flute
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Figure 5.20: Fourier transform of thefilter F corresponding to atransient in a flute
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5.3.2.Modeling of the guitar string

The amplitude modulation laws corresponding to the partials of a guitar string show that the
spectral components are exponentially damped, Figure 5.21. This confirms the result from the theoretical
equations. The attenuation of the componentsis weak compared to thetube case. Figure 5.22 displays
respectively the theoretical and estimated inharmonicity of a steel guitar string. The estimated dataarein
good accordance with the moddl.

amplitude modulation law for a string
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Figure 5.21: Amplitude modulation law of the first component of a guitar sound ( f.=32000H2)
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Figure5.22: f_/(nf,) of asted guitar string in the theoretical and real cases
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Figure 5.23 and Figure 5.24 display the Fourier transforms of the input signal (which correspondsto the
Fourier transform of the input filter E defined in section 5.2.1) and the loop filter F corresponding to a
guitar sound. Since the filters have been estimated directly from the sound itself, E includes the frequency
response of the soundboard mechanically coupled with the string, and its radiative characteristics. One
can observe greater losses for the high frequencies than for the lower ones since high frequency
components decrease faster than low spectral components. This phenomenon can be justified theoretically
by aloss coefficient R being afunction of the frequency (section 5.1.2).
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Figure 5.23: The Fourier transform of the input signal E corresponding to a guitar sound

The accordance between the loop filtersin the theoretical and in the real case is better in the string case
than in the tube case. This may be due to the fact that the excitation of the string in thereal caseis closeto
the punctual excitation used in the theoretical case, since the real string is excited by giving it an initial
displacement. Moreover, it is easier to be more precise in the measurement of the string motion than in the
measurement of the pressure in the tube.
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Figure 5.24: The Fourier transform of thefilter F corresponding to a guitar sound

In both the tube -and the string cases, physical modeling gives a good description of the behavior
of the sound produced by the propagation of atransient. In the guitar case where the source is not
coupled to the resonator, the synthesized sounds are very close to real sounds. Nevertheless, for sound
generator systems using sustained sources (like many musical instruments like wind instruments, string
instruments excited by abow etc.) the input signal hasto be identified and modeled separately. In the next
chapter, we shall see how one can extract the source from the signal, and how the source from aflute can
be modeled. Thiswill lead to amodel which gives agood resynthesis of sustained sounds.
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6. Sound modeling using a combination of physical and signal models

In this chapter | shall show how a hybrid model using both physical and signal models can be
designed and how it can improve the realism of the generated, sustained sound.

For certain instruments the source and the resonator are closely coupled and can therefore not be
considered separately. This can beillustrated by considering the flute case. For thisinstrument the source
Isthe result of an air jet oscillating in response to a transverse acoustical flow due to the acoustica
oscillation in the pipe. The interaction between the jet and the labium transfers energy to the acoustic
standing waves in the resonator [Verge, 1995]. Figure 6.1 shows, in a schematic way, how a recorder-
like instrument works. The flute case is even more complicated since the distance from the flue exit
(corresponding to the player’ s lips) to the labium as well as the width of the air jet can be varied by the
player. By studying recorder-like instruments, Verge has found that these parameters and the jet velocity
are of importance for the quality of the sound, since a turbulent or a laminar jet will be produced
depending on these parameters. Flow visualizations of the interaction jet/labium have been effectuated,
showing vortical structures appearing on each side of the jet. Fabre [Fabre et al., 1996] has found that
vortex shedding at the labium is important for the generation of harmonics in the spectrum. The jet and
the resonator are assumed to be linear elements, and one assumes that higher harmonics are generated by
non-linearitiesin the interaction between the jet and the labium.
oscillating

Jet/
air jet —m» Vv

N

labiun

standing

N waves

N\

Figure 6.1: Schematic illustration of the excitation system of a recorder-like instrument

Synthesis techniques such as waveguide modeling involving non-linearities in the feedback loop
have given interesting results [Cook, 1992] [Smith, 1987]. However, the parameters used in such non-
linear systems are difficult to identify from the analysis.

| therefore propose another approach where the source and the resonator are separated, even
though they are generally not separated in real systems. The resonator being considered as a linear
system, the source can be identified by deconvolution of the sound with the impulse response
corresponding to the resonator.

The source signal is decomposed in terms of adeterministic and a stochastic part. This approach is
similar to the one proposed by Serra[Serra, 1989] but the separation methods used here are different.
The deterministic part of the source signal is modeled by signal model synthesis techniques. These
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techniques must behave non-linearly, taking into account the spectral variations as a function of the play
(input parameters). The methods are chosen such that the models can be controlled by "measurable” data
on the instrument. The fina systemisto berunin rea-time.

6.1. Sourceidentification by deconvolution

In chapter 5.2, it is shown that the resonator can be modeled using arecursive all-polefilter. The
sound output y can be written:
y(t) = (x* h)(t),
where h(t) represents the impulse response of the resonant system and x(t) represents the entrance of the
system called the source signal (Figure 6.2). The amplitudes of the modes related to the resonant system
are hereincluded in the source.

X(t
® -Q) Delay y(t)
source 1 sound
L
resonant
system h(t)

Figure 6.2: Filtering of a source by a resonant system

If h™*(t) suchas (h* h™*)(t) = d(t) exists, the source x(t) can be obtained by deconvolution, that is:

X(t) = (y* h)(®)
This operation is legitimate since, as seen in chapter 5.2 the transfer function of the resonant systemis
given by:

- iwd

yw) __ e

Hw) = x(w) 1- F(w)e ™

and represents an all-polefilter. Thismeansthat H™ (w) is entirely defined and consequently that h™*(t)

exists.
Asan example Figure 6.3 and Figure 6.4 show respectively the resonant system’s transfer
function and itsinverse found from the analysis of atransient flute sound.
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Figure 6.3: Transfer function H(w) of resonance model corresponding to a flute
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Figure 6.4: Inverse transfer function H” 1(w) of the resonance mode! of a flute

Figure 6.5 shows the spectrum of the source obtained by deconvolution. In this case we can see that the
source signal contains both spectral lines and a broadband noise (which in what follows respectively will
be called the deterministic and the stochastic contributions).
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Figure 6.5: spectrum of the deconvoluted signal

6.2. Splitting the deterministic and the stochastic components

To separate the deterministic and the stochastic contributions of the source signal, | first construct
an estimate of the deterministic part by selecting the corresponding spectral components. Further on, this
deterministic contribution is used as a reference signal for an adaptive filter designed to extract the
stochastic contribution.

6.2.1. Estimation of the deter ministic contribution

The deterministic contribution of the source signal can be estimated by using atechnique related to
the one described in chapter 2.1.1. In this technique the deterministic components are selected by filtering
in the frequency domain. The filtering is performed using well localized frequency windows W(w - w)
adapted to the spectral bandwidth of the components to isolate each of them. The spectral components
h,,(w) aregiven by:

h, (W) =qw)W(Ww - w,)
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By summing up the M spectral components one obtains the expression of the estimated deterministic
signal, namely

M M

~ o [}

dw) = q h,Ww) =gw)q WWw - w) = w)H(w)
m=1 =1

This means that the estimated deterministic signal d isfound by filtering the source signal with afilter

whose frequency responseis

H, W)= 9 WW - w,,)

m=1
If W(w - w_,) ischosen in order to get an optimal selection of the component w,,, the noisy part of the
signal filtered by W(w - w_,) can be neglected. In this case d can be considered as an estimation of the

deterministic signa d, differing by alinear filtering. This assumption will be of interest when extracting
the stochastic part of the sound. Figure 6.6 shows the spectral representation of the deterministic part of
the source signal of aflute sound obtained this way.

w10t deterministic part of the spectrum of a fluks sound
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Figure 6.6: spectrum of the deterministic part of the source signal of a flute sound whose fundamental
frequency is 293Hz (D1 for a flute)
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6.2.2.Estimation of the stochastic contribution

The stochastic contribution can now be found by extracting the deterministic part from the source signal.
This can be done by using an adaptive filter. Among numerous methods the LM S (Least Mean Square)
algorithm has been chosen for its adequacy with the actual problem.

6.2.2.1. TheLMSalgorithm

The LM S algorithm is an adaptive method of minimization. It is more specific than Newton's
method or the steepest descent method, since it uses a special estimate of the gradient [Widrow, 1985]. It
Is important because of its simplicity and ease of computation, and is generally the best choice if the
adaptive system is alinear, finite impulse response filter. | shall briefly describe the algorithm in the case
of asystem identification problem. Let us supposethat p(t) = (H * r)(t), and that the response p(t) and
theinput r(t) are available. The general discrete form of the LMS algorithm when searching for H is
given inFigure 6.5. Wk represents the adaptive linear filter, while ex representsthe error signal.

Figure 6.5: General discrete form of the LMSalgorithm

The error signal that isto be minimized is given by

& = pr- Wk
The LMS agorithm uses ek2 as an estimate of the gradient [Widrow, 1985]. Thus at each iteration of the
adaptive process the gradient estimate ﬁk Isgiven by

N Tk fe,
N, =— =2¢,— =-2
<~ Tw, € w, &Lk

Thefilter W, should now be updated following a steepest descent type of adaptive agorithm giving

Wi =W, - nﬁk =W, +2nmer,
where m is aconstant gain that regul ates speed and adaptation of the algorithm. The convergence of the
weight vector W, isassured by:
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0O<m<

Ltr[R]
where R=E[r,r«] istheinput correlation matrix and L isthe length of thefilter W. In the case of a
transverse filter, one can show that tr[R] = E[r;]. As ageneral rule the filter length is determined by the

number of spectral componentsin the reference signal r, and should be twice this number.

6.2.2.2. Application of the LM S algorithm
The stochastic contribution of a sound can be found by using the estimated deterministic part of

the signal d asareference and remove the part of the original source signal that is correlated to this
reference signal. In this case we suppose that the deterministic and the stochastic contributions of the
source are not correlated. Let'scall s, the source signal.

S =d +h,
where d, is the deterministic contribution of the signal and b, is the stochastic contribution. The

estimated deterministic signal d« and d, arerelated by alinear filter h, ;

d, = dkbk
For this specific problem, the principle of the LM S agorithm can beillustrated asin Figure 6.6
— h
dk
dk bk ek
. E——_

Figure 6.6 Anillustration of the principle of the LMSalgorithm used to separate the deterministic signal
and the noise.

The signd that isto be minimized is now
ek2 = (&- bk)2
and the LM S agorithm will make the adaptive filter w, converge towards h and the error e, towardsb, .

Another possibility yet not used here would consist in using a delayed version of the input signal
as areference [Widrow, 1985].
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6.3. Modeling of the deterministic part

In many cases, sounds generated by an excited resonant system behave non linearly since the
evolution of the spectrum is not a simple amplification. Thisis the case for most musical sounds for
which the dynamic way of playing dramatically acts on the resulting sound. However, this non linear
behavior is often related to the excitation, even though some non linearities sometimes appear during
propagation [Gilbert et al., 1997]. | shall here only consider non linearities generated by the excitation
system. In order to model the deterministic part of the non linear source signal, one can use group
additive synthesis as described in chapter 4 or non-linear methods such as waveshaping synthesis. As
discussed in chapter 2, global methods have the advantage of generating complex spectra from easy
calculations using a small number of operations. A review of the waveshaping method is given in chapter
2.1.3. Thismethod will be applied to model a source signal.

From amodeling point of view, one hasto find afunction gand a corresponding index 1(t) able to

generate a given harmonic sound. As seen in chapter 2.1.3, the function gcan easily be linked to the
spectrum of the generated sound for an index value I=1. In this case the coefficients of the decomposition

of gin the Chebyshev basis are given by the values of the modulus of the spectrum to be generated:

3 3

g(cosw,t) = A a,T(cosw,t) = A a,coskw,t

k=0 k=0
In fact, the Chebyshev polynomials are completely defined if the argument is bigger than 1 or smaller
than -1. But in this case we don’t have the orthogonality properties described in section 2.1.3. Thisis
why theindex of distortion issaid to be bounded (- 1£ I(t) £ 1), and why the waveshaping function will
be chosen so that the synthetic signal obtained for 1=1 corresponds to the richest part of the real signal.

Resynthesizing the source signal with the help of a waveshaping method is possible if one can

determine the index function I(t) so that the dynamic evolution of the spectrum coincides with the one of
the real sound. One can calculate the spectrum of the generated sound with respect to the value of the

index |. The knowledge of the decomposition of the function g in the Chebyshev basis allows the

calculation of its decomposition in terms of powers of the argument [Gradshteyn et al., 1980]:
1 & .
T (%) = —2[(x+i\/1- Y+ (x - 1A xz)”] -a (-1)13_;%'2’ (1- x?)!
j=0
The synthetic sound is then given by:
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S(t) =g(I ()cos(Wet)) = @ bil (O (cosiwah)* = & 2, T(I (t)cos(wt))

The decomposition of cos(q)" in term of cos(nq) reads:

cos(q)" = cos™ (q) + cos™ (@),
where
1 i' Bt éand énou
ﬁla ZékgCOSZ(n -kg+¥ 'y

cos”™(q) = Enof

| k=0

n-1
) 1 o ?n- 1y
cos™ () = — cos(2n - 2k - 1

and it allows the computation of the generated spectrum for a given index.

A great disadvantage of the global synthesis techniquesis that the representation of signalsis not
complete, meaning that one can not reconstruct any spectral evolution by changing the index.
Nevertheless, the index can be estimated so that the reconstructed signal satisfies perceptive criteria. In
the following sections | give some examples of the non linearities measured on the flute signa and
describe how the index of distortion can be estimated using perceptive criteria. We shall see that in the
case of the flute, a simple perceptive criterion like the « brightness » (centroid of the spectrum) cannot
give agood description of the timbre evolution, and that more accurate perceptive attributes such as the
tristimulus have to be used.

6.3.1. Consideration of the non-linear behavior

The spectral evolution of a sound depends on the sound generating source. Non-linearities in the
sound producing system cause the spectral components to evolve differenly. This means that when the
energy of the excitation increases, the energy of some spectral components may considerably increase,
while the energy of others may hardly change.

The spectral evolution of aflute sound as afunction of the driving pressure is not the same in the
three registers (corresponding to different musical octaves). Fletcher has studied and analyzed the
harmonic development of sounds produced by four flute players [Fletcher, 1975]. He found that in the
lowest octave the fundamental frequency has alower level than both the second and third harmonics and
may even be weaker than the fourth and fifth harmonics. The level of the fundamental is the same for soft
and for loud playing while the relative levels of al higher harmonics are increased for loud playing. In the
second octave the fundamental becomes dominant for both loud and soft playing. It still changes little
with dynamic level and most of the change is represented by changes in the upper partials. In the third
octave the fundamental is clearly dominant and all upper partials are more than 10dB below it in relative
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level. The fundamenta changes considerably with dynamic level, though still not as much as do the upper
partials.

The non-linear mechanism that generates harmonic components of the pressure in flutesis not
fully understood. Fabre B., Hirschberg A. and Vijnands P.J. [Fabre et al., 1996] have studied the
amplitude of the acoustic pressure in an organ pipe assuming that the non-linearity which generates
harmonics and limits the amplitude of oscillation is concentrated at the jet/labium interaction. By flow
visualization they have observed two vortices shed at the labium, one during the jet/edge interaction and
the second after the jet has passed the labium. They found that both vortices are responsible for important
energy losses of the fundamental frequency component of the acoustical pressure in the pipe, and that the
second vortex appears to be an efficient source for higher harmonic components of the pressure. Verge
has found that the ratio W/h, where h is the height of the flue and W is the distance from the flue exit to
the labium is of importance for the generation of harmonics[Verge, 1995].

To illustrate the effect of the non-linearities, the note G1 (whose fundamental frequency is 392Hz)
and the note C2 (whose fundamental frequency is 523 Hz) played by aflutist were recorded for five
different dynamic levelsin an anechoic room. The flutist was asked to linearly increase the dynamic level
for the five notes (from a perceptive point of view). It isinteresting to note that the total energy of the
sound increases in alogarithmic way when the dynamic level of the notesisincreased in a perceptively
linear way. Thisis probably due to the logarithmic sensibility of the hearing system and to the feedback
occuring between the player and the resulting sound [Miskiewicz et al., 1990]. Figure 6.7 shows the
evolution of the total energy of the five sounds.

evolution of the ensrgy of five sounds with incresasing dynamic level
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Figure 6.7: Energy of five different sounds with different dynamic levels. The sounds that are played
have a fundamental frequency of 392Hz, corresponding to a G1.
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The spectra of the deterministic part for three different dynamic levels of G1 are shown in Figure 6.8 to
Figure 6.10. For a sound played pianissimo, the fundamental component has the strongest level, and the
third and fourth components have stronger levels than the second component. When the dynamic level is
increased, the third component becomes the strongest one, its level being more than twice the level of the
fundamental. The second harmonic is weaker than the third, the fundamental and the fifth harmonic for
high dynamic levels, and the fourth harmonic that is important for weak dynamic levels is almost
disappearing when the dynamic level increases. In general therelative level of the higher harmonics
Increases when the dynamic level increases (apart from the fourth harmonic which decreases between the
mean and the strong dynamic level). Also the level of the fundamental frequency increases with the
dynamic level, which is not in accordance with Fletcher’ s conclusions on the spectral evolution. This may
be due to the different playing techniques used by the different flutists, since some flutists play with a
high driving pressure even for weak dynamic levels, while others increase the driving pressure when
increasing the dynamic level.
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Figure 6.8: Spectrum of the flute sound G1 corresponding to the weakest dynamic level of the five notes.
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Figure 6.9: Spectrum of the flute sound G1 corresponding to a medium dynamic level of the five notes.
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Figure 6.10: Spectrum of the flute sound G1 corresponding to the strongest dynamic level of the five
notes.

The harmonic evolution as afunction of energy for the first seven harmonicsis shown in Figure 6.11.
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Figure 6.11: Harmonic development of a flute sound whose fundamental frequency is 392Hz
(corresponding to G1) as a function of energy. The numbers at the end of the curves correspond to the
harmonic rank of the component.

For the note played pianissmo (weak energy level), the fundamenta is strongest, followed by the
third(*) and the second(+) harmonics. As the energy increases the level of the third harmonic(*) rapidly
increases, and for a mezzo forte note (medium driving pressure), the third harmonic is the strongest,
followed by the fifth harmonic, the fundamental and the second harmonic. For a maximum driving
pressure, the third harmonic is still the strongest, and both the fifth and the sixth harmonics are stronger
than the fundamenta in this case.

6.3.2. Estimation of the waveshaping index

By acting on the wave-shaping index I(t), a harmonic evolution of the synthesized signal can be
simulated by waveshaping synthesis. As already mentioned, an arbitrary evolution of a spectrum cannot
be synthesized with the help of a waveshaping method. Our purpose is to reconstruct a sound in such a
way that it perceptively ressembles the origina one. The problem then consists in approaching the
spectral evolution of the real sound so that the resynthesisis perceptually similar to the original sound. In
order to generate the spectral evolution by varying the waveshaping index, two criteria have been used:
The spectral centroid criterion and the tristimulus criterion. These criteria are described in the following
sections, and a justification of the choice of the tristimulus criterion is given.
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6.3.2.1.Spectral centroid criterion

The spectral centroid criterion is an important characteristic for the perception of the temporal
behavior of amusical tone [Beauchamp, 1982]. It isrelated to the brightness of a sound and is given by
the first order moment of the spectrum:

¥
OVIhw)ldw
BR=-5— .

Ghwldw

0
where h(w) represents the spectrum of the sound.
In Figure 6.12 the spectral centroid of the flute sound C2 (whose fundamental frequency is 523 Hz) is

shown for five dynamic levels of playing. The spectral centroid increases roughly linearly with the
logarithm of the energy of the sound.
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Figure 6.12: Spectral centroid of C2 (whose fundamental frequency is 523 Hz) as a function of the
logarithm of the energy
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6.3.2.2. Tristimuluscriterion

A more accurate approach for representing musical timbre is the tristimulus method [Pollard et al.,
1982]. Thisis athree-coordinate representation taking into account three dimensions that are supposed to
give a satisfactory representation of the sound data [Grey, 1975], namely

1) the spectral energy distribution

2) the presence of low-amplitude, high frequency energy in theinitial attack segment and

3) the synchronism in higher partials (whether the higher partialsrisein level together at the
beginning of the note or fall together at the end).
For that purpose, the loudness for three separate parts of the spectrum was chosen. The loudnessis a
perceptive measure which can be modeled by:

d1/2

ég t+T U
N = keQ (‘)f(t)dtg ,
em=1 u
where
N isthe total loudnessin sones,
Kk is aconstant,

M isthe number of critical bands,
T is an integration time (approximately 100ms for steady sounds, possibly as short as 10ms for
transients),

q(t) isthe output of the auditory system taking into account auditive characteristics. It is given by
¥

q(t) = Cp(t) pet - t)et

where
h(t) isthe impulse response of the auditory system and

p(t) isthe input sound pressure.

As one coordinate Pollard & Jansson decided to use the loudness of the fundamental. The two other
coordinates were chosen by considering critical bands as well as the important effect that certain odd-
numbered partials have on the timbre of the sound. These considerations |led to a coordinate given by the
loudness of the partials 2, 3 and 4 and a third coordinate corresponding to the loudness of the partials 5 to
n. The loudness value of each group can be computed using Steven’s formula:

9
N" =0.85N,, +0.15Q N,

where
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o
N isthe required equivalent loudness, N, isthe loudest part of thegroupand @ N, isthe loudness

of all the partialsin the group. The total loudness N of the sound is now given by the sum of the three
loudness groups, namely

N=N,+N,;+N;]
By this method, the tristimulus can be represented in an acoustic tristimulus diagram, where

X=N;/N
y=N;/N
z=N/N

Since x+y+z=1, it is sufficient to use two of the coordinates to draw the tristimulus diagram asillustrated
in Figure 6.13. When the values of x and y are small, the fundamental is strong, while a high y-value
means strong mid-frequency partials and a high x-value means strong high-frequency partials. In this
way a trisimulus diagram can represent the properties of both sustained sounds and time-varying
transients.

Strong Strong
fundamental high-frequency
partials
X —» 1-0

Figure 6.13: Acoudtic tristimulus diagram

In Figure 6.14 the tristimulus values corresponding to five different driving pressures of areal flute
sound C2 (whose fundamental is 524Hz) are shown. The diagram shows that the flute sound contains
strong mid-frequency partials. When the note is played pianissimo (pp) the fundamental is rather strong
compared to the other partias, while it is weakened compared to the upper partias as the driving pressure
Increases towards fortissimo (ff).
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Figure 6.14: Tristimulus diagramfor five flute sounds with different dynamic levels (pp to ff) whose
fundamental frequency is 524Hz (C2).

6.3.3.Application to the flute

In this section, we apply the techniques described above to model the source signal corresponding
to flute sounds.

The first step consists in constructing a non-linear function so that the « richest » spectrum
obtained by playing the instrument corresponds to awave-shaping index 1=1. This spectrum is obtained
for afortissimo (ff) playing. In this example the values of aflute sound whose fundamental frequency is
524 Hz (C2) have been used. We here considered the 12 first components since the level of the higher
components makes them inaudible, especially after filtering by the resonator. As seen in section 2.1.3,

the amplitudes of these components coincide with the coefficients a, of the non-linear function g in the

Chebyschev’s polynomial basis. In this case, one obtains:
k=12

0¥ =g a,T(x)

k=0
with
a, =0 a, =179 a, =540 a, =229
a,=106 a;, =222 a; =6.30 a,=218
ag =458 a,=18 a,, =143 a,; =189
a;, =145
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Thefunction g isrepresented in Figure 6.15.
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Figure 6.15: Waveshaping function corresponding to a fortissmo played flute sound whose fundamental
frequency is 524Hz.

One note that the value of the function gis different from zero when the argument is zero. This means that

iIf the input of the non-linear system is zero, the output will be non-zero. This particularity is not a
problem when the digital representation of the numbers allows a great precision (the DC bias will not be
heard), which is the case with most floating point processors. Nevertheless, real-time implementation
often necessitates a fast processor using aless precise representation of numbers (typically 16 bit integer).
In such cases, the deviation of the signal due to a DC bias can cause saturations. One can avoid this

difficulty by forcing the function gto be zero when the argument is zero. This can be done by modifying

the signs of the coefficients and thevalue of a,. Actually,

g(0) = é a, T(0) = é a  cog karccos(0)) = é akcosg?((2k+ 1)%8

k=0 k=0 k=0

Only even coefficients have an influence on g(0) , since the value of T,(0) is zero when k is odd, and

(- D*'* when k is even. One can then minimize the value of g(0) by modifying the signs of the even k's,
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and then use the coefficient a, to cancel g(0). Altering the signs of the coefficients which corresponds to

altering the phase of the sound does not modify the sound sinceit is periodic. Further on, the mean value
of the signal should also be minimized to minimize the DC bias when the index of distortion isnon- zero.
Since thisvalueisrelated to the integral of the non-linear function, this corresponds to minimizing this
integral on the subset (-1,1) corresponding to the current index. To minimize thisintegral, one can make
the function fluctuate as much as possible. This can be done by acting on the signs of the coefficients of
the non-linear function. Thistime the signs of the odd coefficients should be modified, since the signs of
the even coefficients were modified to cancel the DC bias. A criterion for finding the signs of the
coefficients leading to aminimum DC biasisto minimize g(+1) . Figure 6.16 represents the same non-
linear function as above, obtained thisway.
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Figure 6.16: Waveshaping function with g(0)=0 and g(x1) minimized.

The second step in modeling the deterministic part of the source signal of a flute consists in
estimating the wave-shaping index and to link it to a measurable value such as the driving pressure. In the
first register there is an important exchange of energy between the first spectral components, while the
other components increase rather monotonically with the energy of the driving pressure. This causes a
problem when using the spectral centroid criterion, since the brightness changes very little with increasing
driving pressure, corresponding to small changes in the waveshaping index. This can be seen in Figure

6.17 where the centroid of the sound generated by waveshaping synthesis using the function gdefined

above s plotted versus the value of the index.
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Figure 6.17: Spectral centroid of the waveshaping function when the waveshaping for values of the
waveshaping index from 0 to 1.

The spectral centroid for five different dynamic levels (pp to ff) of C2 variesfrom 2.8 t0 3.7 asshownin
Figure 6.12. In the waveshaping case, a similar variation range can be obtained for an index varying from
0.97to 1 (Figure 6.18).
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Figure 6.18: Spectral centroid of the waveshaping function for 1=0.97 to I=1.



Unfortunately, when the waveshaping index is 1=0.97, the spectrum of the synthetic signal does not
correspond to the spectrum of the real signal played piano (small energy in the driving pressure).Thisis
shown in Figure 6.19 and Figure 6.20.
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Figure 6.19: Spectrum generated by the waveshaping function for 1=0.97
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Figure 6.20: Spectrum of a pianissimo played flute sound whose fundamental frequency is 523Hz
(corresponding to C2)
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This means that the spectral centroid criterion is not convenient for flute sounds. In fact, this criterion is
suitable for sounds whose spectral components globally increase and not for sounds whose spectrum
dramatically changes during the play.

Another criterion should therefore be used to find the waveshaping index of aflute as afunction
of the driving pressure. For a flute sound the most important exchange of energy appears between the
first to the fifth or sixth components. More importance should therefore be given to these components
than to the higher ones. The tristimulus criterion therefore turns out to be well adapted to a flute sound,
since it divides the spectrum into three groups. one where the evolution of the fundamental is considered,
one where the evolution of the second, third and fourth components is considered, and one where the rest
of the components are considered. Figure 6.21 represents the tristimulus diagram corresponding to a

sound generated by waveshaping synthesis and using the function g defined above. The index evolves
from O to 1 by steps of 0.1.
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Figure 6.21: Tristimulus diagram of sounds generated by a waveshaping function with index values
fromOto 1.

To fit the tristimulus diagram of the real and of the synthetic sounds, the waveshaping index should vary
from 0.5to 1 (Figure 6.22). In contrast to the situation obtained with the centroid criterion, this variation
range gives a spectral evolution of the synthesized sounds close to the spectral evolution of real sounds
with different dynamic levels.
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Figure 6.22: Tristimulus diagram of sounds generated by a waveshaping function with index values from
0.5to 1 (*) and of five flute sounds (whose fundamental frequency is 523Hz) with different dynamic
levels (pp to ff).

The modeling of the deterministic part of the source signal of a flute sound can thus be obtained
using a waveshaping technique. The index of the waveshaping function should vary from 1=0.5to I=1
according to the logarithm of the driving pressure, Figure 6.23.
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Figure 6.23: Relation between the waveshaping index and the driving pressure.
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In order to equalize the changes in amplitude induced by the variations of the distorsion index, the
output signal must be adjusted by a post correction (Figure 6.23).

e(t)=I(t)cosw,t 9(x)

_ QP - (1)

Post-correction
amplitude

Figure 6.24: Equalization of amplitude changes induced by the variations of the distortion index.

The amplitude of the output signal generated using the function g(x) illustrated in Figure 6.16 is shown
below.

w107 generated signal amplitude versus distorsion index
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Figure 6.25: Amplitude of the generated signal.
The post correction amplitude corresponds to the inverseif this function.

88



6.4. Modeling of the stochastic part

In this chapter the stochastic part of the source signal will be characterized in order to be
resynthesized so that is satisfies perceptive criteria. Stationary and ergodic processes are here considered,
since such processes generaly correspond to steady state sounds of musica instruments. As an
illustration, Figure 6.26 represents the spectrogram of aflute noise obtained using the LM S algorithm, as
described in section 6.2.2. One can see that the spectrogram is roughly invariant with respect to time as
soon as a steady state is established.
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Figure 6.26. Spectrogram of a flute noise

The assumption of stationarity and ergodicity means that the noise can be described by its power
spectral density and its probability density function. From a perceptive point of view, the « coloring » of
the noiseis mainly related to its Power Spectral Density (PSD). The probability density function can also
be of importance. Differences in these functions can make the noise sound differently. The differenceis
easy to notice when comparing, for example, a noise with a uniform and a Gaussian probability density.
However, the difference is very subtle and sometimes hard to notice when the probability density
functions have more similar shapes. Since the probability density function may have a perceptive
influence on the noise, | shall show how such a characteristic can be taken into account in the synthesis
process.
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6.4.1.The probability density function
The probability density function f;(x) isapositive valued function such that:

O s()dx=1

The cumulative distribution function F(x) defined by:

F(x) = Ofs(dx

corresponds to the probability for the value of the random signal B to be less than or equal to some value
X [Schwartz, 1970].

The probability density function f,(x) isrelated to the histogram of the values x from the noisy
process B. Actually, by considering arandom signal with n samples the values of which are separated by
Dx, and by calling n, the number of samples having the value x, the probability density function f;(x) is
given by:

. n./Dx
00 = im =
n® ¥

As an example, Figure 6.27 shows the histogram of a random Gaussian process containing n=2000
values with Dx=16.
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Figure 6.27: Histogram of a random gaussian process.
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To generate arandom process with a given probability density function f;(x), one can start with a
process U having a uniform probability density function on the interval [0,1]. Actually, one can show
[Haykin, 1983] that the process B = F (U) has the probability density function fy(x). This
corresponds to a waveshaping agorithm, where the entrance is given by the uniform process U, and the
non-linear function by the inverse of the cumulative distribution function F(x).

6.4.2.The power spectral density

The Fourier transform of arandom process is generally not defined since the processis either not
integrable or square integrable. The Power Spectral Density (PSD) plays arole equivalent to the spectrum
of adeterministic signal.

The PSD of arandom processis given by the Fourier transform of its autocorrelation function
[Schwartz, 1970]. The autocorrelation function of a stationary process x(t) is defined as:

R(t) = E[X(t +t)x(V)] = li@)ng—i Ot + )Xyt

and the power spectral density is:
Sw) = AR} = CRt)e " dt

From a synthesis point of view, one can generate a random process having a given power spectral density
by using alinear filter. Actually, let’s respectively denote S (w) and S, (w) the power spectral densities
of the input x(t) and of the output y(t) of alinear filter, and H(w) the transfert function of the linear filter.
We then obtain:

§ W) =|HW) 'S w)
This means that one can generate the « colored » process by filtering a white noise with a filter whose

transfert function satisfies [Hw)|* = S,(w).

6.4.3.Application to the flute noise

In this section, we describe the characteristics of the non deterministic part of the source signal
corresponding to a flute sound. This non deterministic part has been extracted using the LM S algorithm
described above.

Asdiscussed in section 6.4.1, the probability density function f;(x) isrelated to the histogram of
the values x taken by the noisy process B. It can be easily estimated as soon as the random process can be
separated from the deterministic one, which is generally the case for source signals. The histogram of the
stochastic part of aflute sound is shown in Figure 6.28. It gives an estimation of the « shape » of the
probability density function.
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histogram of the non-deterministic part of a flute sound
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Figure 6.28: Histogram of the stochastic part of a source signal of a flute sound.

We see that the histogram is symmetric and that it follows an exponential law. This means that the noise
to be generated when modeling a flute sound should have the following probability density function:

|
f —_ald
9=e

In the case of theflute, | has been measured to be equal to 1.25 " 10" °. This estimation has been done by

fitting a straight line on the logarithmic representation of the estimated probability density function
represented in Figure 6.29.
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Figure 6.29: Natural logarithm of the estimated probability density function corresponding to the
stochastic part of the source signal of a flute. The superposed straight line allows the estimation of | .

To construct a process with a given probability density function from a process u(t) with a

uniform probability density function on the interval [0,1], we must calculate F*(u) , where F(x) isthe
"repartition” function given by:

X

F() = () o

it can be calculated asfollows;

I'x
. . O;¢ dx for uf£0
F(u) = oie"'x'dx:'
. -

dx + e *dx for u30



Theresult of the integration is
F(u):%e'“ for UEO
and
1 -lu
F(u):l-—ze for us o0
This means that
log(F(u)) = -1log(2) +1 u for us o0

and
log(F(u) - 1) = - log(2) + | u for uf£O

The inverse repartition function obtained writing u = F*(y) isgiven by :

109(2y) for —1 £EyE1l
I 2

log(2(y -1))
I
Figure 6.30 shows the inverse repartition function corresponding to the non deterministic part of the
source signal of aflute. It allows the generation of a random process with an exponential probability

density function from a process having a uniform probability density function.
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Figure 6.30: The inverse repartition function corresponding to the non deterministic part of the source
signal of a flute.
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At this stage, one may notice that the probability density function of a processis not invariant by linear
filtering; except in the case of the normal law (Gaussian probability density function). Nevertheless, if the
correlations induced by the filtering are weak, then the probability density function is aimost unmodified.
Thisisthe case for the flute signal where the non deterministic part of the source corresponds to a dlight

low-pass filtering of awhite noise.
Asan example Figure 6.31 shows the power spectral density of the stochastic part of the source
of aflute sound.
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Figure 6.31: Power spectral density of the stochastic part of the source of a flute noise.

The stochastic part of the source signal can now be modeled by linear filtering of awhite noise.
This model together with the model of the deterministic part of the source signal gives ageneral model of
the source signal based on signal modeling.

By combining the source model with the physical model simulating the behavior of the waves
during propagation in the medium, very general sound models can be constructed. In the next section we
shall see how this general model can be applied to the flute case.
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6.5. A hybrid flute model

In Figure 6.32 a hybrid flute model which makes use of the methods described in this document is

shown. As mentioned in the introduction of this chapter, the physics behind the sound generating system
of afluteis not fully understood. By flow visualisation, vortex phenomena have been observed during
jet/edge interaction in recorder-like instruments [Verge, 1995]. Therefore a hybrid flute model is
proposed, where the excitation system is modeled by signal synthesis models described in section 2.1,
and the resonator is modeled by a physical synthesis model of the waveguide type described in section
2.2. The model can be piloted by the driving pressure and by the frequency. For this purpose a classical
flute has been used. Electromagnetic sensors have been connected to each fingerhole in order to detect the
note played. The cork of the flute situated close to the embouchure has been replaced by a microphone
detecting pressure variations from the player. The finger position together with the pressure gives the
« effective » length of the resonator and thus the delay D used in the waveguide model simulating the
resonator. The frequency corresponding to this length feeds the oscillator generating the input signal of
the non-linear waveshaping function. The pressure measured at the embouchure is related to the
waveshaping index and gives the amplitude of the oscillator. It is obtained from the logarithm of the
envelope (as described in section 6.3.3) and isin the flute case bounded between the I=0.5and I=1. By
band-pass filtering of the pressure, the vibrato is extracted and added to the frequency input of the
oscillator.
By adding the vibrato to the source of the system, the resonance peaks of the source will fluctuate. This
means that when the source is injected into the resonator, the resonance peaks of the source and of the
resonator will not be tuned all the time. Thus the amplitude at the output of the system will fluctuate and
be stronger when the two systems are tuned than when they are not tuned. In this way the amplitude
fluctuations (tremolo) follow the frequency fluctuations (vibrato) like on atraditional flute.

The pressure is also related to the level of the noise generator. The output of the non-linear
function in addition to the generated noise gives the whole source to be injected into the resonant system.
The noise generated when closing the finger holesis also part of the input of the resonant system. The
speed at which the key pad is closed can be calculated as explained in section 7.3.2. The resonant system,
as described in chapter 5, takes into account dissipation and dispersion phenomena related to the wave
propagation in the tube.
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Figure 6.32: The hybrid flute model

A description of the real-time processor used for the realization of the hybrid flute model is given
in chapter 7.
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7. Real-time control of a sound model

This chapter addresses the control of sound models using appropriate interfaces. As seen in the
previous chapters, a genera sound model can be designed by splitting the sound generating system into a
source and aresonator. Hybrid models can then be constructed using both physical and signal models.
The digital implementation of such techniques necessitates the programming of units such as oscillators,
waveshaping units, noise generators, recursive filters, delay lines etc.

The auditive bandwidth which determines the sampling frequency imposes the speed of the
processor if it isto run in real-time. The Shannon (or Nyquist) theorem states that the sample rate should
be at least twice the maximum frequency of the signal [Haykin, 1983]. Assuming that the auditive
bandwidth is limited to 20KHz, the sampling rate for audio signals should be at least 40 KHz.
Consequently, area time implementation of a sound model necessitates a processor able to run the whole
synthesis program within at most 1/40000 s. Even though computers unceasingly are getting more
powerful, these constraints generally impose the use of specific architecturesfor digital signal processing.
| shall describe how the GENESI'S processor has been used for real time implementation of the hybrid
flute model.

An important aspect of real-time implementation is the control of the model. In this case, digital
interfaces must be designed in accordance with the aim of the sound simulator. The construction of these
interfaces is mainly related to two aspects. First of all, one must take into account the problem of the
correspondence between the synthesis parameters and the perception of the produced sounds. Actually
these parameters should be controlled with the help of the interface. Then the physical interface should be
designed asto alow anatural control of the sound. Two examples will be given, namely the radio baton
of Max Mathews and a flute interface which was designed to control the hybrid flute model. | shall finaly
discuss the performance possibilities offered by such arealization and how adigital flute like instrument
can be used for musical purposes.

7.1. Thereal-timeprocessor GENESS

The real-time processor GENESIS (GENErateur des Slgnaux Sonores), developed by the Steria
Digilog company, is based on the same structure as the processor SY TER (SY stéme TEmps-Réel). This
processor was developed inthe 80's by Jean-Francois Allouis [Allouis, 1982] a INA-GRM as a
synthesis and sound processing tool. This machine was an extension of a host computer (DEC PDP
11/73), well adapted to the real-time execution of synthesis algorithms and to signal processing. The
processor GENESIS has the same architecture as SY TER, but is, thanks to new technologies, faster with
abigger memory and a larger word length (32 bits). In addition, GENESIS is not related to a specific
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host computer, but contains its own operating system and a hard disk. This makes the machine
« independent », being able to receive program loading instructions from a serial port or an ethernet link.

A host station is however necessary when using development tools such as edition, compilation,
updating of programs and wavetable calculations, and when there is to be an interaction with GENESIS
viaMIDI (Musical Instrument Digital Interface). A description of MIDI will be given in section 7.3.2.
The host station could be arbitrarily chosen, but so far only implementations on UNIX workstations have
been realized. A Silicon Graphics Indy computer has here been chosen because of its audio interface
quality and of its computing power offering additional possibilities of synthesis and of red-time
processing. The ease of using aMIDI interface is an additional advantage.
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Figure 7.1: Synoptic scheme of GENES'S

The GENESIS processor is a complicated machine. The architecture is of the Harvard type in
which the programs and the data are situated in different parts of the memory. The data are distributed in
two physically different parts of the memory, one with aweak capacity (2kbytes), but with arapid access
containing the registers of the machine, the other with alarger capacity (1Mbytes), but with a slower
access, intended for the wavetables.

The efficiency of the machine for classical synthesis algorithmsis essentially due to the simplicity
of the arithmetic unit which in most cases executes the same basic operation (Figure 7.2). Two operands
A and B are read from the register memory and transmitted either to the multiplier or to the adder. The
result of the operation can either be sent to the digital to the analog converter, stored in the data memory
for further processing, or being used as an address to read or write to a wavetable.
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Figure 7.2: simplified organization of the GENES Sarithmetic unit

Each elementary stage of this operation necessitates an instruction cycle. The complete read-compute-
store process therefore needs several cycles, but the pipeline structure makes it possible to execute all the
elementary operations in parallel. While executing an operation, the processor stores the result of the
previous operation and fetches the following operation.

Since the execution of an elementary operation is distributed over several cycles, the programmer
has to be careful not to use the result of a previous operation before it has been stored in the memory.
Thus, the programmer may have to insert wait cycles into the program. This rule represents the most
severe constraint for the programming of the machine. The operator A can be shifted before addition or
multiplication, and can for instance be used to generate a white noise (pseudo-random signal).

The adder can work in several modes; saturated, modulo or test mode. In the saturated mode, if
the result goes beyond the capacity of the adder (32 bits), it isforced to be given the highest value on 32
bits. In modulo mode the calculus is done with one additional carry bit, but only the 32 least significant
bits make the result. These two modes are especially interesting for computing wavetable addresses. In a
saturated mode, the array is swept in acyclic way: after having reached the end, one systematically getsto
the beginning. The test mode makes it possible to compare the two operators. It is the only conditional
instruction of the machine.

The multiplier is able to accumulate the results of successive multiplications, which means that
algorithms such as convolutions are straightforward. Addition, multiplication and multiplication-
accumulation are thus the basic operations. If other functions are necessary, they should be calculated off-
line and stored in the wavetables. In each sampling period the complete program is executed. The higher
the sampling frequency, the lower the capacity of calculus resources. These should therefore in priority
be reserved for the synthesis.
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7.2. Real-timeimplementation of the model

In this section a description of the implementation of the sound model proposed in chapter 6 is
given. The source signal synthesized by asignal model and the resonator simulated by a physical model
are respectively described.

7.2.1. Real-time implementation of the source model

The source signal of the flute model comprises four different contributions to be calculated and to
be mixed before being processed by the resonator. These contributions correspond to the deterministic
part, the stochastic part, the impulsive part corresponding to the noise generated by the key pads and a
part provided by an external source. The implementation of the source model isillustrated in Figure 7.3.
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Figure 7.3. Scheme of the implementation of the source model.

In order to calculate the deterministic part of the signal, the signal measured by the microphone at
the embouchure is processed by a peak detector the aim of which is to extract the « envelope » of the
signal. Thisenvelopeisthe main external actuator since the dynamic behavior of the sound will be driven
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by it. It will be used to construct both the frequency fluctuations (vibrato) and the spectral evolution
through the distortion index. The vibrato is correlated to the fluctuations of the envel ope as seen in section
4.2. These fluctuations are extracted from the envelope using a bandpass filter (5-15Hz) implemented by
two cascaded Butterworth I IR filters. These variations are then added to the pitch command which is
given by the finger position in order to drive the frequency input of the oscillator. The amplitude input of
the oscillator corresponding to the distortion index is obtained from the logarithm of the envelope
according to section 6.3.3. This datais then processed by atrigger module to ensure that it is bounded
between two values: 1, and |, . Inthe flute case these boundary values correspond to 1 ,,=0.5 and
... =1.0 as described in section 6.3.3. At the output of the waveshaping module the amplitude of the
signal is adjusted using a post correction table equalizing the changes in amplitude induced by the non-
linearity.

The generation of the stochastic part of the source signal isimplemented using a gaussian pseudo
random noise source band-pass filtered through a cascade of two Butterworth 1R filters (500-2500 Hz).
To obtain the correct relationship between the envelope of the input signal and the level of the stochastic
part of the source signal we make use of a correction table.

To make the model more realistic, an impulsive contribution has been added. This contribution
corresponds to the noise produced by the key pad and is triggered when a key is pressed on the
instrument. The impulse response of the « entrance filter » described in section 5.2.1 is stored in a
wavetable that is read when akey is pressed. The level of the impulse noiseis controlled by the closing
speed of the key pad provided by the flute interface that will be described later.

Finally, an external input with its own level control has been added, offering a possibility of
driving the resonator with an external signal. Thiswill for example allow the various noises from the
player’ s mouth to be taken into account.

7.2.2. Real-time implementation of the resonator model

The resonator constitutes a delay line and a loop filter. The fundamental frequency of the
« instrument » can be adjusted varying the delay length. The implementation of the resonator model is
illustrated in Figure 7.4.
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Figure 7.4: Scheme of the implementation of the resonator model

For musical purposes the resonator may be tuned so that the delay is not an integer number of the
sampling period. This can be taken into account by splitting the delay line into an integer delay line
realized with atable and afractiona delay line implemented as an all-pass filter according to the works of
Jaffe and Smith [Jaffe et al., 1983]. Such an implementation may produce audible « clicks » when
switching from one delay to another. A « clickless » implementation has been proposed by Van Duyne,
Jaffe, Scandalis and Stilson [Van Duyne et al., 1997] and implemented here. It consists of two delay
lines (which means two allpass filters) feeding a crossfade module to gradually switch from the output of
one delay line to the output of the other.

7.3. Theman-machineinterfaces

In an interactive way, the computer can make sounds and sound sequences evolve in real-time.
Musical interpretation can then make sense when disposing possibilities of expression adapted to such
new digital instruments. Unlike for traditional instruments, an interface with a digital instrument is not
restrained by the mechanics of the instrument. The relation computer-sound depends on synthesis
parameters which have a direct influence on the generated sound. The synthesis techniques that are used
determine the number of parameters to be controlled and whether or not they can be controlled
independently. When using for instance an additive synthesis technique, a software layer between the
controller and the parameters should be defined, so that the player could act on several parametersin a
simple way. By acting directly on the synthesis parameters intervening in the construction of a sound, the
musician would have the possibility of giving apersonal touch to the sound.
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Thanks to powerful computers, interesting realizations of new interfaces are possible nowadays.
Even though completely new instruments can be made, the most common digital instruments use
keyboard interfaces. Such interfaces detect the speed at which the keys are struck. To control a percussive
instrument this information may be sufficient, but such an interface is not satisfactory for models
corresponding to sustained instruments, since for such instruments the sound can be modified after the
attack. The music industry has tried to solve this problem by adding so called breath controller or after
touch systems. However, the instrumental playing is often closely related to the structure of the
instrument. This means that for example the linear structure of a keyboard is not easily adapted to the
trumpet play, and that the information given by a keyboard is poor compared to the possibilities that a
flute player disposes when playing a sound. Some attempts have been done to make digital wind
instruments like MI1DI saxophones or flutes. Some instruments have completely failed because of the
fingering system when it is completely different from the simulated instrument. Still when the fingering
system corresponds to a known instrument, the blowing system remains too simple, giving no possibility
for amusician to personalize the sound. Thisisthe most difficult problem, since the excitation system of
awind instrument is generally very complicated to simulate and since the musician generally investigates
alot of time to generate a satisfying sound. In general physical models simulating the propagation of
elastic waves (waveguide synthesis models) are well adapted to interfaces imitating traditional musical
instruments. Additional commands can then be added extending the sound and/or playing possibilities.

Even though most digital instruments do not sufficiently take into account the personal touch a
musician wants to give when playing, musicians are interested in sound effects and transformations.
Many composers dream of adding new possibilities to instruments. Playing on non-realizable instruments
like a 120 meter long flute or blowing into a string could be interesting. In addition, by modifying the
timbre of traditional sounds, instruments that are generally associated to one specia « kind » of music,
can be used in any context.

To demonstrate the way a sound model can be controlled, two different interfaces are here
described: The radio baton and a flute-like interface. The radio baton is a recent instrument designed by
Max Mathews, originally meant to execute musical sequences by moving two batons over a square plate
containing sensors. In spite of theinitial aim of this instrument, we shall here see how it can be used to
perform intimate transformations on the sound itself. The second interface is a flute equipped with
electromagnetic sensors and a microphone at the embouchure level. The interface is devoted to the
proposed hybrid flute model. In this case traditional playing techniques can be used together with the
commands added to the instrument.

7.3.1.Theradio baton

The conception of sensors detecting movements has been an important part of Max Mathews’
research work. One of his realizations, the Sequential Drum, consists of a surface equipped with sensors.
When an impact is detected on this surface, the apparatus indicates the intensity and the position of the
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impact on the surface [Mathews et al., 1980]. A collaboration with Boie [Boie, 1988][Boie et al., 1989]
led to the realization of the radio drum which detects the motion even when there is no contact between
the surface and the emitters. The radio drum isin fact able to continuously detect the position of the
extremities of the two drum sticks (emitters).

These first prototypes were connected to a microcomputer containing an acquisition card piloted
by a conductor program alowing a read-time control of the execution tempo of a partition aready
memorized by the computer [Mathews 19914a], [Mathews 1991b], [Mathews 1997]. The radio drum s
aso called the radio baton, since the drum sticks launching musical sequences can be related to the baton
used by a conductor of an orchestra.

Max Mathews realized the radio drum for two reasons;

- to make it possible to actively listen to a musical play by releasing musical sequences and thus
give apersona interpretation of amusical work.

- to make it possible for asinger to control hisor her own accompani ment.

The radio drum comprises two sticks (batons) and a receiver (a 55x45x7 cm paralelepiped)
containing an electronic part. In a simplified way, each drum stick can be considered as an antenna
emitting radio frequency waves. A network with five receiving antennas is placed inside the drum. It
measures the coordinates of the placement of the extremities of the drum sticks where the emitters are
placed.

v
N 4

/ AN
Y

Figure 7.5: Placement of the receiving antennas of the Radio Baton

Theintensity of the signal received by one of the antennas depends on its distance from the emitter: it gets
stronger as the emitter gets closer to the antenna. To evauate the position of the extremity of the baton as
afunction of the x axis, it is sufficient to calculate the difference in intensity between the antennas x and
X" (Figure 7.5). In the same way the antennasy and y’ give the position of the emitter as a function of the
y-axis. In order to get information about the height of the baton (the z-coordinate), it is sufficient to add
the intensities received by the five antennas.

Since each baton emits signals with different frequencies, it is relatively easy to discriminate
between the signals sent by the two batons to each antenna.
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The relation between the coordinates and the intensity of the received signalsisnot linear. A
treatment of these datais necessary so that the system gives information proportional to the coordinates of
the batons. This operation is realized by a microprocessor making it possible to add other functionsto the
instrument. The last versions contain an additional software either making it possible to transmit the
coordinates of the batons (and information about the controllers) when requested from a micro computer,
or to transmit the coordinates of one of the batons when it cutsavirtual plane paralld to the surface of the
drum the same way as when one hits its surface. When the program detects the virtual plane, it calculates
and transmits the velocity of the movement as a function of the z-axis. The height of the plane can of
course be modified. This leads us back to the functioning of the Sequential Drum.

These working modes (transmission of the data when there is an external request or a strike
detection) make possible a dialog between the instruments and the device to be controlled. The
microprocessor of the radio baton makes the implementation of this communication possible by the use of
the MIDI protocol and of a program like MAX [Puckette et al., 1985] to communicate with the radio
baton. The control possibilities with instruments that can be programmed are then almost unlimited.

A presentation of the radio baton was given by our research team at an international colloquium on
new expressions related to music organized by GMEM (Groupe de Musique Expérimentale de Marseille)
in Marseille [Kronland et al., 1997][ Y stad, 1997]. Intimate transformations on sound using the radio
baton were here demonstrated. | shall briefly describe how the radio baton was used to perform sound
transformations with additive and physical synthesis techniques.

The parameters defining an additive synthesis model are given by the amplitude modulation laws
A, of the components together with their frequency modulation laws f,. The synthesis processis then
obtained by:

5 ® L
st) =a A® COSgZp ofk(U)duE :
0

k=1

where K isthe number of spectra components.

Additive synthesis methods give resynthesized sounds of high quality, but these are difficult to
manipulate because of the high number of parameters that intervenes. Three parameters have been used
for manipulating the sound using the radio baton, namely the duration of the note, its frequency and its
amplitude. In each case the manipulations can be done independently for each modulation law or globally
on all the modulation laws. In our case the duration of the sound and the frequency manipulations are
donein aglobal way. This corresponds to a simple acceleration or slowing down of a note when the
duration is altered, and to a Ssmple transposition when the frequency is atered. The amplitude modulation
laws have been modified differently, giving the possibility of effectuating afiltering or an equalization on
the sound. In Figure 7.6, the control possibilities of the radio baton are illustrated. The sound is
generated when one of the radio batons cuts a virtual plane the height of which is predefined by the user.
The x-coordinate is related to the duration of the generated sound and the y-coordinate to the transposition
factor. The second baton is used to control the note after excitation (aftertouch) and usesthe y coordinate
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to act on the frequency transposition (like for the first baton) and the z-coordinate to fix the slope a of a

straight equalization line. This slope is positive when the baton is over a predefined plane (0 point in
Figure 7.6) corresponding to an attenuation of low-frequency components and thus to a high-pass
filtering. Thisisillustrated in Figure 7.7. When the baton is below the zero point, the slope is negative,
corresponding to alow-pass filtering.
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Figure 7.6: Control of the instrument by additive synthesis
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Figure 7.7: Equalization of the spectrum over the O point

The second baton could have controlled a third parameter corresponding to the x-coordinate, but since
playing the radio baton was difficult with the possibilities already described, this parameter was not used.

When the radio baton acts on a waveguide model (shownin Figure 7.8), the parameters to be
modified have a physical significance. The delay corresponds for instance to the effective length of the
resonator and thus to the frequency of the note played.
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Figure 7.8: Physical synthesis model

The parameters that are to be modified by the batons in this example act on the delay and on the excitation
of the model (the source). One of the batons acts on the choice of the excitation: each of the four corners
of the receiver corresponds to a different excitation as shown in Figure 7.9. In the middle of the plate, the
source corresponds to a mixture of the four sources with weights depending on the distance from each
corner. The second baton acts on the delay of the resonator (thus on the frequency of the note played)
given by the y-coordinate. In addition it acts on the frequency of the excitation signal when a saw tooth

sourceis used.
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Figure 7.9: Control of the instrument with a waveguide synthesis model

frequency

The radio baton is an interesting instrument offering a great number of playing possibilities.
However, certain playing effects like for instance the vibrato played on awind instrument is hard to make
with the radio baton. An interface where an other playing technique is used is therefore presented in the
next section, namely aflute interface.

7.3.2. A fluteinterface

In this section, an example of the construction of an interface using atraditional instrument of the
flute typeis given. The flute has been connected to a computer by magnetic sensors detecting the finger
position and a microphone at the embouchure level detecting the pressure variations. It is important
to underline that the aim of such an interface isto add new possibilities to an aready existing instrument.
The « new » instrument will give musicians the possibility of making use of playing techniques aready
acquired. This means that the musician has to be familiar with the instrument and will in addition have to
learn how to play with the additional commands. The general problem, when proposing new instruments
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to musicians, is that they often are afraid of investigating alot of time to learn to play on an instrument
that may not be used in the future. That is why an instrument which conserves traditional playing
techniques will hopefully be attractive to musicians.

As seen in section 6.5, the flute synthesis model is based on a hybrid model where the resonator
of the instrument is modeled with a physical model simulating the propagation of the wavesin atube
(waveguide model), and the source is modeled using a global synthesis model of the waveshaping type.
As aready mentioned, the physical phenomena observed at the embouchure of a flute are not fully
understood, and even though some models describing the interaction between the air jet and the labium
have been proposed [Verge, 1995], some of the parameters intervening are difficult to measure, and the
equations are not often compatible with real-time implementation.

The flute has been equipped with linear Hall effect sensors detecting the distance to the magnets
connected to each key pad. The state of each key pad then gives the frequency of the note played. The
speed at which the key pad is closed can be calculated by measuring the distance between the sensor and
the magnet at different instants. Figure 7.10 shows the table of the state of the keys in the first octave.
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F1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
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Al 1 1 1 1 1 1 0 1 0 0 0 0 0 0
A1#|l 1 1 1 1 1 0 0 1 0 0 0 0 0 0
H1l] 1 1 1 1 0 0 0 1 0 0 0 0 0 0
C?2 1 1 1 0 0 0 0 1 0 0 0 0 0 0

Figure 7.10: Table of the state of the keys in the first octave.

The linear Hall effect sensors measure a system’s performance with negligible system loading while
providing isolation from contaminated and electrically noisy environments. Figure 7.11 shows that the
sensor includes alinear amplifier in addition to the Hall sensing element.
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Figure7.11: Linear Hall effect sensor

The magnetic sensors have been placed on an auminum rail fastened to the flute. The magnets are

fastened to the support rods where the key pads are fixed so that they approach the sensors when the key
pads are closed asillustrated in Figure 7.12 to Figure 7.15.
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Figure 7.12: Schematic illustration of the connection between the key pad and the magnet
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Figure 7.14: Flute with magnets and sensors.
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Figure 7.15: Close view of the fixation system of the magnets connected to the key-pad bar.

The state of the keys gives the equivalent length of the resonator, and thus the frequency of the
note played. The corresponding delay line in the waveguide model can then be found. In some cases, the
state of the keys does not change when the same note is played in different registers, and the
measurements of the pressure level at the embouchure should in this case determine the frequency of the
note played. This frequency is also used at the entrance of the sine generator feeding the non-linear
function of the source model.

The speed at which the key-pad has been closed can also be detected, giving the level of the key-
pad noise to be generated.

The pressure variations are detected by a microphone situated inside the flute at the cork position
near the embouchure, as shown in Figure 7.16.
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Figure 7.16: Placement of the microphone detecting the driving pressure at the embouchure level

This system does not represent a complete way of characterizing the playing, since for instance the angle
at which the air jet hits the labium, or the position of the player's lips, are not taken into account.
However, these important features influence the internal pressure which is measured and which acts on
the generated sound. The detection of the pressure variations makes it possible to estimate the vibrato,
which will be added to the frequency information and used at the entrance of the sine generator. The
logarithm of the pressure envelope will further be used as an amplitude at the entrance of the sine
generator. It will also be used to determine the level of the non-deterministic source signal that will be
added to the deterministic source signal before the entrance of the resonator.

Figure 7.17 shows how the information from the sensors can be transformed and sent to the real-
time processor. In this case the information is transformed into MIDI codes through a MIDI coding
processor. MIDI (Musical Instrument Digital Interface) isthe specification for a set of digital codes for
transmitting music control and timing information in real time, and for the hardware interface through
which the codes are transmitted [Moog, 1986]. MIDI can for instance be used to network synthesizers,
sequencers and rhythm-machines on-stage. It is often used as atool for composers, and represents an
inexpensive link between large research computers and conveniently programmable music-oriented tone-
producing instruments. Each M1DI-equipped instrument usually contains areceiver and atransmitter. The
receiver accepts messages in MIDI format and executes MIDI commands. The transmitter originates
messages in MIDI format and transmits them by a UART (Universa Asynchronous Receiver-
Transmitter) and aline driver. The interface operates at 31.25 kBaud, asynchronous with a start bit, 8
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data bits (DO to D7) and a stop bit. This makes atotal of 10 bits for a period of 320 microseconds per
serial byte.

The information can be manipulated by the MAX program [Puckette et al., 1985] which can for
example link the instrument to other MIDI systems. The program MAX can also be used to alter the
sound by modifying the synthesis parameters.
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Figure 7.17: Synoptic of the connection of a digital interface of the flute type

In the next section, a discussion on the performance with this interface will be given. 1t will be
seen how new commands can be added and how the characteristics of the instrument can be changed.

7.4. Performance using theflute-like interface

Asmentioned in the introduction, sound modeling does not only consist of resynthesizing
sounds, but also of doing intimate transformations on the sound. This makes it possible to use the digital
flute both as atraditional instrument and as adigital instrument which makes use of additional commands
to modify the sound. The modifications of the sounds can either be done at the MIDI interconnection level
or by acting directly on the parameters of the mode.

Since the flute-like interface generates MIDI codes to control the model, one can use these codes
to pilot any kind of MIDI equipped instrument. Thisiswhy the MAX program is used to make the
correspondence between the MIDI codes obtained from the interface and the parameters of the model.
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Actualy, the MAX program can be used to distribute information and commands to other MIDI systems.
Figure 7.18 showsthe MIDI control in a schematic way.
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Figure 7.18: Schematic representation of the MIDI interconnection

From amusical point of view, one can for example imagine amusical piece where some MIDI sequences
are launched when a specific note is played on the flute. In the same way, since the real-time processor is
also considered as a MIDI instrument, the tune of the flute can be changed by assigning arbitrary values
of the frequency for a given key state. At this point, the musical possibilities are only limited by the
Imagination.

The parameters of the model can dramatically act on the sound itself. Since the digital flute model
has been designed to respond to MIDI codes, one can act on the parameters of the model using MIDI
controllers such as pedals, diders, etc. These controllers can act on different parameters of the model. In
Figure 7.19 the main locations on which it may be interesting to operate have been pointed out. Even
though these possibilities are not exhaustive, | shall briefly describe their impact on the sound:
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Figure 7.19: Control of the model’ s parameters. The bold and italic indications show the modification
possibilities.

- Action on the vibrato. The frequency of the vibrato can be changed by acting on the filter selecting the
fluctuations of the amplitude modulation law corresponding to the internal pressure. By changing the gain
of the output of the filter, the depth of the vibrato can be changed. The vibrato can also be artificialy
generated.

- Action on the distortion index. The distortion index is a very sensitive parameter which has been
estimated to fit the spectral evolution of the flute sound. Nevertheless, a change in the correspondence
between the internal pressure and the distortion index can be imagined. A brass effect can then be given to
aflute sound by increasing the variation domain of the distortion index.
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- Action on the distortion function. Changing the characteristics of the distortion function dramatically
changes the timbre of the deterministic part of the source signal. A distortion function with a
decomposition which only contains odd Chebychev polynomials can for example be used to generate a
clarinet- or pan flute- like source.
- Action on the noise. The characteristics of the noise can be modified by acting on the noise filter (power
spectral density) and on the statistics (probability density function). The relation between the deterministic
and the stochastic parts of the source signal can also be modified by acting on the noise gain. If the
deterministic part is removed, then the resulting sound would be a noise filtered by the resonator.
- Action on key-pad noise. The level of the key-pad noise can be adjusted using again at the output of the
key-pad noisetable. If both the deterministic and stochastic parts of the source are removed, the resulting
sound would correspond to the one obtained by closing the key-pads. The key-pad noise can also be
atered by modifying the corresponding table and could for instance be replaced by any percussive sound.
- Action on the resonator. The loop filter characterizes the resonator and takes into account dissipation and
dispersion phenomena. By altering thisfilter, the characteristics of the medium in which the waves are
propagating will be altered. Cross-synthesis effects can be made by using parameters corresponding to a
source of a certain instrument and the resonator corresponding to another instrument. Using aloop filter
corresponding to a string with a flute excitation, a very particular sound would be generated,
corresponding to blowing « into » astring. In asimilar way external sources to be filtered by the
resonator can be added. Thiswould, for example, alow the generation of the noises made by the flutist
while playing.
- Action on the delay line and the oscillator frequency. By changing the offset of these parameters, one
can simulate instruments with unrealistic sizes, like for example a 100m long flute.

All these manipulations show the advantage of sound modeling, which enables a modification of a
natural sound in the same way as synthetic sounds.
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8. Conclusion

Sound modeling consists of designing synthesis methods the aim of which isto reproduce and
manipulate a given natural sound. For that purpose, one first has to develop analysis methods adapted to
the non-stationary nature of sounds. Further on, estimation procedures must be designed in order to
extract parameters characterizing the sound from a physical and a perceptive point of view. The synthesis
process can be designed to reproduce a perceptive effect and/or to simulate the physical behavior of the
sound generating system. The correspondence between analysis and synthesis parametersis crucia and
can be achieved only if the synthesis model is well adapted to the sound which isto be simulated. This
work addresses the sound modeling using a combination of physical and signal models. This approach
aims to take into account the most relevant aspects of the sound linked to the physical behavior of the
sound generator and to the perceptive aspect which is sensitive to the extreme complexity of most natural
sounds. Thus, it is possible to manipulate and to make intimate transformations on the sound while
conserving the physical nature of the original sound. Real-time control of such models makesit possible
to use specialy designed interfaces mirroring already existing sound generators like traditional musical
Instruments.

The presentation of this work starts with a description of various synthesis techniques. These
techniques can be divided into two main classes, namely signal models and physical models. Signal
models use a purely mathematical description of sounds and are used to simulate a perceptive effect.
Physical models describe the sound generating system using physical considerations. Their aim is to
simulate the behavior of existing or virtual sound generators.

Analysis techniques able to characterize the timbre of a sound must take into account both its
dynamic and spectral behavior. The analysis methods of the time-frequency type are shown to satisfy this
requirement. After a description of the most famous methods such as the Gabor and the wavelet
transform, a matched time-frequency analysis method using some a-priori knowledge on the signal has
been designed. This method, which is adapted to the sound generated by resonant systems, optimize the
analysis process. Examples of the extraction of quantitative values from these time-frequency
representations are discussed to illustrate the specificity of each method.

In a first attempt to construct a sound model, an example of estimation of parameters
corresponding to an additive synthesis method applied to the flute sound is given. It consists of grouping
the amplitude and frequency modulation laws of the components to obtain a simple model based on a
group additive synthesis. The sounds obtained using this method are satisfactory, but since the model
makes use of a purely mathematical description of the sound, the relation between its parameters and the
physics of the instrument is not obvious. This makes the control of such amodel difficult. In addition
such amodel does not take into account the turbulent noise being an important part of a flute sound.

Another attempt of sound modeling has therefore been done using physical models. Such models
are constructed to simulate the solution of the one-dimensional wave equation in abounded dissipative
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and dispersive medium. The parameters of the model can be found either from the explicit solution of the
equation or estimated from the analysis of real sounds. Theoretical parameters which are often biased
since they are resulting from simplified equations, can thus be adjusted thanks to experiments on natural
sounds. The proposed physical model has been applied to the flute and to the guitar. The dispersion
introduces inharmonicity between the partials and the dissipation leads to different decay times for the
components. The comparison between the flute and the guitar shows that the modes in a guitar string are
less attenuated than the modes in atube. The dispersion is also very different in the two cases. In atube
the dispersion effect is very small and the frequency interval between the components gets smaller asthe
component rank increases. In the string case the dispersion effect isimportant and the frequency interval
gets bigger as the component rank increases. A description of the construction of specific filters taking
Into account these important phenomenais given. It is based on the minimization of the energy difference
in a neighborhood of the resonant peaks between the response of the model and the response of the real
system. The corresponding impulse response is then constructed in away similar to the inversion of a
time-frequency representation. Actually it consistsin summing up elementary functions adjusted and
positioned in the time-frequency plane, along a curve representing the group delay. The model
constructed this way leads to good quality sounds where physical considerations are taken into account.
Hereby, for instance, a sound produced by a short string decays faster than a sound produced by along
string. In the case of atube, a noise source produces an easily recognizable turbulent noise propagating
into the tube.

Nevertheless, for sustained systemsit is important to model the source of the system. This
problem has been addressed by separating the source and the resonator using a deconvol ution technique.
Further on the source is modeled in terms of a sum of a stochastic and a deterministic part separated by
adaptive filtering techniques such asthe LM S algorithm. When the source behavior is assumed to be non-
linear, the deterministic part can be modeled using a non-linear technique such as the waveshaping. To fit
the spectral evolution of the synthetic and the real source, psychoacoustic criteria such as the tristimulus
have been used. Such criteriamakes it possible to separately treat components within the same critical
band. The stochastic part has been modeled using linear filtering to reconstruct the power spectral density
of the stochastic part of areal sound. The probability density function has also been taken into account.
These methods have made the construction of realistic sounds using a combination of signal and physical
models possible.

The real-time control problem of such amodel has finally been addressed to propose arealization
of an interface. The implementation on areal-time processor and the control of such a general model have
therefore been described. Two different interfaces have been demonstrated; the radio baton and a flute
designed especially to control the proposed flute model. Some applications to the sound modeling are
finally given showing the advantage of sound modeling which enables a modification of natural soundsin
the same way as synthetic sounds.
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Summary

Sound modeling consistsin designing synthesis models to reproduce and manipulate natura
sounds. The aim of thiswork isto define sound models taking into account physical aspects linked to the
sound source and their perceptive influence. For this purpose, a combination of physical and signal
models has been used.

The document starts with a presentation of the most important synthesis methods. Further on, one
searches for a correspondence between the synthesis parameters and the data obtained through the
anaysis. The non-stationary nature of sound signal's necessitates the consideration and the adaptation of
analysis methods like time-frequency representations. The parameters resulting from the analysis can
directly feed an additive synthesis model. An application to flute sounds corresponding to this kind of
modeling is presented.

Models smulating the wave propagation in the medium are further designed to give more
importance to the physical characteristics of the sound generating system. Stretched strings and tubes
were here considered. By comparing the solutions of the movement equations and the response of the so-
called waveguide system, one constructs an estimation method for synthesis parameters. Dispersive and
dissipative effects due to the medium in which the waves propagate are then taken into account.

For sustained sounds the source and the resonator have been separated by deconvolution. By
using an adaptive filtering method, the source signal is decomposed in two contributions: a deterministic
component and a stochastic component. The modeling of the deterministic part, whose behavior generally
Is non-linear, necessitates the use of global synthesis methods like waveshaping, and perceptive criteria
such as the Tristimulus criterion. The stochastic component is model ed taking into account the probability
density function and the power spectral density of the process.

An example of real-time control of aflute model is presented. A flute equipped with sensorsis
used as an interface to control the proposed model. Possibilities of intimate sound manipulations obtained
by acting on the parameters of the model are discussed.
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Sammendrag

Lydmodellering innebaarer konstrukgon av syntesemodeller til bruk for gjenskaping og
manipuliering av naturlige lyder. Mal et med dette arbeidet er & definere lydmodeller som tar hensyn til
fysiske aspekt knyttet til lydkilden og deres lyttemessige innflytelse. En kombinasion av fysiske modeller
og signal modeller er brukt til dette formalet.

Denne fremstillingen starter med en presentagon av de viktigste syntesemetodene. Videre sgkes
en sammenheng melom synteseparametre og analysedata. De ikke-stagonsge egenskapene til
lydsignalene nadvendiggjer vurdering og tilpasning av andysemetoder sA som tids-frekvens
representasjoner. Parametrene fra analysen kan direkte brukes pa additive syntesemodeller. Denne type
modellering er anvendt pa flaytetoner.

Modeller som simulerer bglgeforplantingen i mediet er videre konstruert for i starre grad a ta
hensyn til fysiske karakteristikker av lydproduksjonssystemet. Modellene er anvendt pa spente strenger
og rer. En estimeringsmetode av synteseparametrene basert pa en sammenligning av balgelikningenes
|@sninger og responsen til balgeledersystemet er utviklet. Denne modellen tar hensyn til disperson og
dissipasion som oppstar ved balgeforplanting i mediet.

For vedlikeholdte lyder er kilde og resonator adskildt ved dekonvolugon. Ved hjelp av en adaptiv
filtreringsmetode deles kildesignalet videre i et deterministisk og et stokastisk bidrag. Modelleringen av
den deterministiske komponenten, som vanligvis har en sterkt ulinesar oppfarsel, ngdvendiggjer bruken
av globale syntesemetoder s som « waveshaping » samt lyttemessige kriterier s3 som Tristimulus
kriteriet. Ved modellering av den stokastiske komponenten er det tatt hensyn til sannsynlighetstettheten og
effektspektraltettheten til prosessen.

Et eksempel pa sann-tids kontroll av en flaytemodell er til dutt presentert. En klassisk tverrflayte
utstyrt med sensorer er brukt til & styre den foreslatte modellen. Manipuleringsmuligheter ved endring av
parametrene som inngdr i modellen er diskutert.
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Résumeé

Lamodélisation sonore consiste a construire des model es de syntheses susceptibles de reproduire
et de manipuler des sons naturels. L’ objectif de ce travail est de définir des modeles sonores prenant en
compte aussi bien les aspects physiques liés ala source sonore que leur conségquences perceptives. Pour
cela, on s'intéresse a des model es constitués par une combinaison de modéles physiques et de modeles de
signaux.

Apres avoir discuté les principa es méthodes de synthese sonore, on aborde la problématique de la
mise en correspondance entre |es paramétres de synthese et les données de I’ analyse. La nature non-
stationnaire des signaux sonores conduit alors a considérer et a adapter des méthodes d’ analyse de type
temps-fréguence. Les parameétres issus de I'anadyse permettent directement de caler des modeles de
synthese additive. Une application a ce type de modélisation est donnée dans le cadre des sons de fl(te.

Dans le but d une meilleure prise en compte des caractéristiques physiques du systéme de
production sonore, on s'intéresse ensuite a la construction de modéles basés sur e comportement des
ondes se propageant dans une structure résonante. Les cas des cordes tendues et des tuyaux ont été
considérés. La comparaison entre |es solutions des équations du mouvement et la réponse du systeme
« guide d’onde » a permis la congtruction d’une méthode d estimation des paramétres de synthese
prenant en compte les effets dispersifs et dissipatifs liés au milieu de propagation.

Dans | e cas de sons entretenus, la séparation source-résonateur a été réalisee par déconvolution.
Le signal source est alors décomposg, par filtrage adaptatif, sous forme de deux contributions: une
composante déterministe et une composante stochastique. La modélisation de la composante déterministe,
dont le comportement est généralement fortement non-linéaire, a nécessité I’ utilisation de méthodes de
syntheses globales telle que la distorsion non-linéaire, et de critéres perceptifstel que le Tristimulus. La
composante stochastique est quand a elle modélisée en prenant en compte la densité de probabilité et la
densité spectrale de puissance du processus.

On aborde enfin le probleme du contrdle temps-réel en prenant I’ exemple d’ un modéle defllte. La
description d'une interface calquée sur I'instrument réel est donnée, et quelques possibilités de
mani pulation intime des sons par action sur les paramétres du modéle sont discutees.

Motsclefs

Modéles sonores, Analyse-synthése, Analyse temps-fréquence, Modél es physiques, Modéles de signauix,
Distorsion non-linéaire, Tristimulus, Temps-rédl, Interface, FlGte, Informatique musicale.
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